首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ground state rotational spectra of CH2DCCH and CH3CCD (main species and 13C-substituted species) have been measured up to 470 GHz. Accurate rotational and centrifugal distortion constants have been determined. r0, rs, rε,I, and rρm, structures of propyne have been calculated. The ab initio structure has also been calculated using three different methods (SCF, MP2, and QCISD) and two basis sets (DZP and TZ2P). Offsets have been derived empirically using molecules containing structural units present in propyne and whose equilibrium structures have been determined previously. A near-equilibrium structure has been estimated to be acetylenic r(C---H) = 1.061 (1) Å, r(CC) = 1.204 (1) Å, r(C---C) = l.458 (2) Å, methyl r(C---H) = 1.089 (1) Å, and (CCH) = 110.7 (5)°.  相似文献   

2.
The microwave spectra of three isotopic species of dichlorosilane, SiH2Cl2, in its ground vibrational state, have been measured in the frequency region 8–40 GHz. The spectra have yielded values for the rotational constants, centrifugal distortion constants, and chlorine nuclear quadrupole coupling constants, as well as the molecular dipole moment, 1.13 ± 0.02 D. The molecule has C2v symmetry, and the bond lengths and angles r(Si---Cl=2.033±Å, r(Si---H)=1.480±0.015Å, (Cl---Si---Cl)=109°43′±20±, (H---Si---H)=111°18′±40′ The centrifugal distortion constants have been compared with those calculated using a published force field.  相似文献   

3.
An improved harmonic force field of difluoroborane has been calculated using the vibrational wavenumbers and quartic centrifugal distortion constants of four isotopic species. The unidentified vibrational mode ν5 is predicted at 1049 ± 50 and 775 ± 50 cm−1 for HBF2 and DBF2, respectively. The ground-state average structure of HBF2 has been found to be rz(BH) = 1.195 ± 0.003 Å; rz(BF) = 1.315 ± 0.001 Å; (FBF) = 118.0 ± 0.1°.  相似文献   

4.
This work gives an extensive critique of studies on methyl bromide and all its isotopic varieties with special stress on their rotational, vibrational, and rovibrational spectra. The rotational constants of more than 40 vibrational states of CH3Br and 20 of CD3Br, as well as of the ground states of all varieties, were critically examined and corrected where needed. An almost complete set of harmonic and anharmonic constants for CH3Br was derived. From the set of rotation-vibration interaction constants, new accurate equilibrium constants Ae and Be have been evaluated for CH379Br, CH381Br, CD379Br, CD381Br, from which the following equilibrium structure is obtained: re(C---H) = 1.0823 Å; re(C---Br) = 1.9340 Å; α(HCH) = 111.157°.  相似文献   

5.
The dye laser excitation spectrum of the vibronic transition of DCF was observed between 17 200 and 17 400 cm−1 with the Doppler-limited resolution. DCF was produced by the reaction of microwave-discharged CF4 with CD3F. The observed spectra, which were found to be nearly free of perturbations, were assigned to 858 transitions of the KaKa = 4−5, 3−4, 2−3, 1−2, 0−1, 1−0, 2−1, 3−2, 3−3, 2−2, 1−1, 0−0, 2−0, and 0−2 subbands, and were analyzed to determine the rotational constants and centrifugal distortion constants for both the and à states. The rotational constants of DCF thus determined were combined with those of HCF to calculate the structural parameters for this molecule: r(C---H) = 1.138 Å, r(C---F) = 1.305 Å, and HCF = 104.1° for the ground state, and r(C---H) = 1.063 Å, r(C---F) = 1.308 Å, and HCF = 123.8° for the excited à state.  相似文献   

6.
The microwave spectra of CHD2CN and CHD2NC have been measured from 18 to 40 GHz; about 20 type A and 30 type C transitions have been observed for each molecule. These have been fitted to a Hamiltonian using 3 rotational constants, and 5 quartic and 4 sextic distortion constants, in the IrS reduction of Watson [in “Vibrational spectra and structure” Vol. 6 (1977)]; the standard error of the fit is 26 kHz. For methyl cyanide the 5 quartic distortion constants have been used to further refine the recent harmonic force field of Duncan et al. [J. Mol. Spectrosc.69, 123 (1978)], but the changes are small. Finally, for both molecules, the harmonic force field has been used to determine zero point average moments of inertia Iz from the ground state rotational constants for many isotopic species, and these have been used to determine an rz structure. The results are compared with rs structure calculations.  相似文献   

7.
Eight bands of the 2350 Å system of sulfur dioxide have been rotationally analyzed as A-type transitions of a prolate asymmetric rotor, confirming that the electronic transition is 1B21A1[2b1*) ← 1a2(π)]. The electronic energy and rotational constants of the 0-0 band are, in cm−1: These constants correspond to the average structure r0 = 1.560 Å and θ0 = 104.3°. However, the vibrational structure can only be satisfactorily accounted for on the hypothesis of a double-minimum potential in the antisymmetrical stretching coordinate Q3, the energies of the fundamental levels in the three modes of the B2 state being: (100), 960 cm−1; (010), 377 cm−1; and (001), 220 cm−1 The (001) level is not observed in the spectrum but can be calculated from the distortion constants and inertial defect of the rotational analysis: the level (002) = 561 cm−1, obtained directly from the vibrational structure, establishes that there is strong, positive anharmonicity in the first three levels of this vibration, as required by the assumption of a double-minimum potential function. Preliminary values are reported for the barrier to the symmetrical configuration, V/hc 100 cm−1, and for the difference in bond distances in the equilibrium configuration, Δr0.12 Å. Coon and his co-workers have previously considered the possible asymmetry of this state but the Q3 inversion barrier obtained by them, 656 cm−1, is much higher than in the present work, and reasons for this are discussed.  相似文献   

8.
The rotational spectrum of the bromoform molecule is complicated by overlap of extensive hyperfine splitting structure of three bromine nuclei belonging to four isotopic species of comparable abundance. We have been able to achieve an unambiguous assignment of this spectrum on the basis of complete hyperfine patterns of the lowest-J rotational transitions recorded at conditions of supersonic expansion with chirped-pulse, broadband Fourier transform microwave spectroscopy. The mm-wave rotational spectrum was then also studied up to J = 131 and 318 GHz, and extensive measurements are reported for four isotopic species of HCBr3 and four DCBr3 species. Precise values of many spectroscopic constants have been determined from global fits of all measurements for a given isotopic species and have been substantiated by comparisons among the various isotopic species and with results of ab initio calculations. The experimental measurements allowed determination of the axial rotational constant C for the symmetric top species, evaluation of nuclear quadrupole hyperfine splitting constants in the principal quadrupole axes of the bromine nucleus, and extension of the range of known values of the h3 splitting constant. The rz geometry of HCBr3 was also determined.  相似文献   

9.
A detailed rotational analysis of the microwave spectrum between 26.5 and 40 GHz of phosphaethene, CH2=PH, has been carried out. This molecule is the simplest member of a new class of unstable molecules—the phosphaalkenes. The species can be produced by pyrolysis of (CH3)2PH, CH3PH2 and also somewhat more efficiently from Si(CH3)3CH2PH2. Full first-order centrifugal distortion analyses have been carried out for both 12CH231PH and 12CH231PD yielding: A0 = 138 503.20(21), B0 = 16 418.105(26), and C0 = 14 649.084(28) MHz for 12CH231PH. The 101-000 μA lines have also been detected for 13CH2PH, cis-CDHPH and trans-CHDPH. These data have enabled an accurate structure determination to be carried out which indicates: r(HcC) = 1.09 ± 0.015 Å, (HcCP) = 124.4 ± 0.8°; r(HtC) = 1.09 ± 0.015 Å, (HtCP) = 118.4 ± 1.2°; r(CP) = 1.673 ± 0.002 Å, (HCH) = 117.2 ± 1.2°; r(PH) = 1.420 ± 0.006 Å, (CPH) = 97.4 ± 0.4°. The dipole moment components have been determined as μA = 0.731 (2), μB = 0.470 (3), μ = 0.869 (3) D for CH2PH; μA = 0.710 (2), μB = 0.509 (10), μ = 0.874 (7) D for CH2PD.  相似文献   

10.
The ground state rotational spectrum of germyl fluoride was measured up to 1273 GHz (J ≤ 63). The rotational constants and quartic and sextic centrifugal distortion constants have been determined accurately for five isotopic species in natural abundance (70/72/73/74/76Ge). The high accuracy of the rotational constants of these five isotopomers allowed us to study the mass dependence of the substitution coordinate of Ge. Equilibrium rotational constants of 74GeH3F were deduced with the help of the axial rotational constant and the rotation-vibration interaction constants determined by high resolution infrared spectroscopy. The r0, r,I, and re structures of GeH3F were determined.  相似文献   

11.
A Dutta  A I Jaman 《Pramana》1985,24(3):499-502
The microwave spectrum ofcis 3-fluorophenol involving rotational states up toJ=28 has been observed and analysed in the frequency range 23–25 GHz in the ground vibrational state at room temperature. Analysis yields three rotational and five quartic centrifugal distortion constants. A tentativer 0 structure has been proposed satisfying the observed rotational constants. The small value of the inertia defect Δ=0·07 confirms the planarity of the conformer.  相似文献   

12.
Guided by a previous microwave study (9–35 GHz), the rotational spectrum of both chlorine isotopologues of chloroiodomethane in its vibrational and electronic ground state has been re-investigated in the microwave region and extended to the millimeter/submillimeter-wave region. Weak a-type transitions have been recorded by Fourier transform microwave spectroscopy below 20 GHz whilst strong b-type rotational transitions have been recorded between 15 and 646 GHz, corresponding to energy levels with J″ ≤ 108 and . Molecular constants including those describing the hyperfine structures owing to the two halogen atoms were accurately determined for both species from the least-squares analysis of a total of 1475 distinct transition frequencies (of which 906 belong to the CH2I35Cl isotopologue). The two sets of rotational constants allowed us to derive an r0 structure of CH2ICl.  相似文献   

13.
The pure rotational spectrum of HZnCl (X 1Σ+) has been recorded using sub-millimeter direct-absorption methods in the range of 439–540 GHz and Fourier transform microwave (FTMW) techniques from 9 to 39 GHz. This species was produced by the reaction of zinc vapor and chlorine gas with H2 or D2 in a d.c. glow discharge for the sub-millimeter studies. In the FTMW measurements, HZnCl was created in a discharge nozzle from Cl2 and (CH3)2Zn. Between 5 and 10 rotational transitions were measured in the sub-millimeter regime for four zinc and two chlorine isotopologues; four transitions were recorded with the FTMW machine for the main isotopologue, each consisting of several chlorine hyperfine components. The data are consistent with a linear molecule and a 1Σ+ ground electronic state. Rotational and chlorine quadrupole constants were established from the spectra, as well as an rm(2) structure. The Zn–Cl and Zn–H bond lengths were determined to be 2.0829 and 1.5050 Å, respectively; in contrast, the Zn–Cl bond distance in ZnCl is 2.1300 Å, longer by 0.050 Å. The zinc–chlorine bond distance therefore shortens with the addition of the H atom. The 35Cl electric quadrupole coupling constant of eQq = −27.429 MHz found for HZnCl suggests that this molecule is primarily an ionic species with some covalent character for the Zn–Cl bond.  相似文献   

14.
The spectrum of 1Δ and 3Σ SO has been studied in the millimeter and submillimeter region of the microwave spectrum. This expanded spectral coverage has made possible the measurement of twenty-two previously unobserved transitions, several of which are necessary for an accurate calculation of the energy levels. As a result, it is now possible to calculate the rotational transitions between energy levels for which J ≤ 10 in both the ground 3Σ electronic state and the excited 1Δ electronic state to an accuracy comparable to that of the microwave measurements themselves ( 1 MHz). Among the molecular constants calculated are; for the 1Δ state: B0 = 21 295.405 MHz, D0 = 0.0350 MHz, ωe = 1108 cm−1, and r0 = 1.4920 Å; and for the 3Σ state: B0 = 21 523.561 MHz, D0 = 0.03399 MHz, λ0 = 158 254.387 MHz, γ0 = −168.342 MHz, 0 = 0.305 MHz, r0 = 1.4840 Å, Be = 21 609.552 MHz, λe = 157 779.2 MHz, and re = 1.4811 Å.  相似文献   

15.
The new molecule 1-phosphabut-3-ene-1-yne, CH2=CHCP, produced by pyrolyzing prop-1-ene-3-phosphorus dichloride, CH2=CHCH2PCl2, was detected by microwave spectroscopy. The analysis of the rotational transitions indicates that the molecule is planar with constants: A0 = 46 694(24), B0 = 2807.7100(21), and C0 = 2645.8356(21) MHz. These rotational constants indicate that the structure of the vinyl group is essentially the same as that in CH2=CHCN and CH2=CHCCH; r(C---C) = 1.432 Å and (C=C---C) = 123.9°. The dipole moment parameters are μA = 1.181(2), μB = 0.074(1), and μ = 1.183(2) D. The vibrational satellite spectra for the C---CP bending modes indicate that ν11(a′) = 184 ± 30 cm−1 and ν15(a″) = 263 ± 30 cm−1.  相似文献   

16.
The microwave spectra of six isotopic species of selenoformaldehyde, H213C78,80Se, D2C78,80Se, and DHC78,80Se have been assigned. The resultant rotational constants, together with those of previous work yield the following substitution structure: r(C=Se) = 175.31 pm, HCH = 117.93°, and r(C---H) = 109.04 pm. This structure is compared with the equilibrium structure derived from ab initio calculations. The fundamental vibrational frequencies and centrifugal distortion constants of H2C80Se have been calculated.  相似文献   

17.
The strongest vibrational satellites in the rotational spectrum of acrylonitrile have been assigned and frequencies of μa- and μb-type transitions in the frequency range 27–184 GHz are reported for the first two excited states in the lowest frequency in-plane CCN bending vibrational mode and the first excited state in the out-of-plane CCN bending mode. The values of the rotational constants, the quartic and sextic centrifugal distortion constants, and one octic centrifugal distortion constant are determined for each of these states. Less extensive results are also presented for the third quantum of the in-plane bend. The data set for the ground state has been extended by a number of new measurements and the improved ground state constants are used in a discussion of changes in rotational and centrifugal distortion constants with vibrational state where all constants associated with Pzn and P2Pz(n−2) terms in the Hamiltonian are found to reflect the common origin of the two CCN bends.  相似文献   

18.
The a type transitions of the microwave rotational spectra of cyanophosphaacetylene, H2PCCCN, have been investigated in the frequency region between 5 and 26.5 GHz by Fourier transformation microwave (FTMW) spectroscopy. Rotational, centrifugal distortion and 14N nuclear quadrupole coupling constants have been determined. Density functional theory level ab initio calculations were performed to predict the molecular constants, and the predicted values are in good agreement with our experimentally determined results. The 13C and 15N isotopomer transitions were also observed. The derived r0 structure is quite comparable to the calculated H2PCCCN equilibrium geometry.  相似文献   

19.
The presently available microwave, millimeter wave, and far-infrared data of five isotopic species of isocyanic acid, namely, HNCO, H15NCO, HN13CO, HNC18O, and DNCO, have been used to obtain improved values of the ground-state rotational constants, the five quartic distortion constants, and some higher-order distortion constants in the IrS reduced Hamiltonian of Watson. The appropriate planarity relation among the quartic centrifugal distortion constants has been imposed in the fitting procedure. The general harmonic force field of isocyanic acid has been determined using all existing data, and assuming a trans bent equilibrium geometry of the molecule with an NCO angle of 170°. Finally an rz structure has been obtained using the Az, Bz, and Cz rotational constants of five isotopic species. The bending of the NCO chain is found to be 8° in the trans configuration.  相似文献   

20.
Cyanobutadiyne has been produced by gas phase copyrolysis of pyridine and phosphorus trichloride in a flow reactor. The yield of the reaction is sufficiently good to allow the detection of rotational transitions of the 13C and 15N containing species in natural abundance. Normal pyridine and its fully deuterated variant have been used as precursors, making it possible to study the ground-state rotational spectra of 14 isotopomers in the millimeter wave region. Very accurate values of the rotational and quartic centrifugal distortion constants have been obtained for all the isotopic species investigated, and in addition the sextic distortion constant has been precisely determined for the most abundant variants H12C514N and D12C514N, for which the measurements have been extended up to 460 GHz. A mixed experimental-theoretical equilibrium structure has been evaluated for cyanobutadiyne combining experimental ground-state rotational constants with theoretically computed zero-point contributions. The re geometry is compared with operationally defined purely experimental structures, namely r0, rs, and rm(1) molecular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号