首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an optical method for measuring small displacements using the surface plasmon resonance (SPR) heterodyne interferometry. A heterodyne light beam reflected by a mirror passes through a hemisphere glass and then enters into a surface plasmon resonance apparatus at the resonant angle. A small displacement of the mirror will introduce a phase-difference variation between p- and s-polarizations of the light emerging from the SPR apparatus. The phase-difference variation can be precisely measured with the heterodyne interferometric technique, and the associated displacement can be estimated. The feasibility of this method was verified by experiment, and the displacement measurement resolution of about 1.4 nm over a traveling range of 6 μm was achieved. Our method of measurement has the merits of both common-path interferometry and heterodyne interferometry.  相似文献   

2.
A simple non-contact method is proposed for measuring the concentration of solutions. Using the significant phase difference between p- and s-polarizations of the reflected light of a surface plasmon resonance apparatus, the variation in the phase difference, which is caused by a variation in the concentration of a test solution, can be accurately measured by common path heterodyne interferometry. Then, by substituting the corresponding variation in the incident angle of light at the base of the SPR prism in a specially derived equation, the concentration of the test solution can be determined. The validity of this method was demonstrated experimentally. This method is characterized by the advantages of the device having a simple non-contact structure; it being easy to operate; and its high accuracy, stability, and resolution.  相似文献   

3.
Xiqu Chen  Qiang Lv 《Optik》2010,121(9):818-820
The phase-shift interferometry combined with surface plasmon resonance (SPR) effect has been studied as a novel technique used to analyze the bio-surface, which measures the spatial phase variation of SPR reflected light. The spatial sensitivity of the SPR imaging sensor is improved over the conventional SPR imaging systems based on optical intensity.  相似文献   

4.
In this study an alternative method based on surface plasmon resonance is proposed for in-situ monitoring of variation in the refractive index of a test sample. A wavelength-modulated light source and an unequal-path-length optical configuration heterodyne interferometer are used to detect the phase difference change, which can then be used to estimate the change in the refractive index of a test sample. The experimental results demonstrate a phase stability of 0.02°. The resolution power of the refractive index is 1.5 × 10− 6 RIU. This method has several advantages over previously used methods such as simple optical setup, easier operation in real time, and low cost.  相似文献   

5.
We propose a plasmonic structure to obtain polarization-insensitive localized surface plasmon resonance (LSPR) sensor, which consists of cross-slit metallic periodic arrays embedded in the background material. Numerical simulation illustrates that the mechanism of the LSPR sensor is based on the shift of the Fabry–Perot cavity mode resonance peak in the spectrum as the change of the dielectric material properties for the near fields. And one of the transmission dips of the structure is very sensitive to the background materials; the structure could gain the sensitivity (nm/RIU) more than 500 nm/RIU. Meanwhile, the structure holds great potential to achieve high-performance sensors in practical application due to polarization-insensitive virtue.  相似文献   

6.
We develop a displacement measurement and positioning system with nanometer resolution over the millimeter traveling range. The method is based on a heterodyne grating shearing interferometry, a homemade lock-in amplifier and a servo control loop for displacement sensing and positioning. The quasi-common optical path configuration of our system provides better immunity against environmental disturbances. The experimental results demonstrate that our system can measure small and long displacement with nanometric resolution. The device achieves a positioning resolution of 2.3 nm over a traveling range of 20 mm.  相似文献   

7.
Surface plasmon resonance polarizator for biosensing and imaging   总被引:1,自引:0,他引:1  
A novel polarization-sensitive surface plasmon resonance (SPR) biosensing/imaging scheme is proposed. The scheme uses a periodical spatial phase modulation of the pumping beam of a mixed polarization in the Kretschmann–Raether geometry and takes advantage of SPR-based polarizing effect to drastically absorb p-polarized component changing the resulting polarization state of the beam. The scheme then uses Fourier Transformation to efficiently treat and filter spatially-modulated polarization-sensitive signals and thus to extract and process selected SPR-based response. This approach offers a much higher accuracy of measurements in SPR-based multi-sensing and remote sensing.  相似文献   

8.
The mechanism of neural activity detection using the surface plasmon resonance (SPR) phenomenon was theoretically explored in this paper. Investigating the mechanism of SPR neural recordings has been difficult due to the complex relationship between different physiological and physical processes such as excitation of a nerve fiber and coherent charge fluctuations on the metal surface. This paper examines how these different processes may be connected by introducing a set of compartmental theoretical models that deal with the molecular scale phenomena; Poisson-Boltzmann (PB) equation, which was used to describe the ion concentration change under the time varying electrostatic potential, Drude-Lorentz electron model, which was used to describe electron dynamics under the time varying external forces, and a Fresnel's three-layered model, which expresses the reflectivity of the SPR system in terms of the dielectric constants. Each physical theoretical model was numerically analyzed using the finite element method (FEM) formulated for the PB equation and the Green's method formulated for the Drude-Lorentz electron equation. The model predicts that the ionic thermal force originating from the opening of the K+ ion channel is fundamental for modifying the dipole moment of the gold's free electron; thus, the reflectivity is changed in the SPR system. The discussion was done also on important attributes of the SPR signal such as biphasic fluctuation and the electrical noise-free characteristics.  相似文献   

9.
This paper reports on a novel design of a fiber optic surface plasmon resonance (SPR) sensor based on nanoparticle metal film. The performance of the proposed sensor in terms of its signal-to-noise ratio (SNR) and sensitivity under different conditions related to the film with spherical gold nanoparticles embedded in a host material is theoretically analyzed. In particular, the effect of the parameters such as gold particle size, film thickness, and refractive index of host material is studied and the possible explanation, whenever required, is given. The numerical results presented in this paper leads to fulfill the requirement of significant optimization of the important design parameters to achieve a high SNR and sensitivity of a fiber optic SPR sensor with nanoparticle films.  相似文献   

10.
The surface plasmon resonance (SPR) for spectral modulation of the femtosecond laser pulses with 110 nm ultra-broad bandwidth is demonstrated on the basis of the development of ultrashort pulse laser sources which supports good spatial resolution and high peak intensity. Employing the femtosecond surface plasmon polariton pulses launched by a Kretschmann configuration, whose reflectivity curve has the characteristic of the ultra-broad bandwidth, we observe a frequency-dependent loss with greater attenuation at the peak of the spectrum profile than in the wings, which is very useful for adequate spectral modulation. The SPR for the spectral modulation is investigated in theoretical and experimental aspects. The arbitrary spectral modulation of the femtosecond laser pulses can be fulfilled by controlling and optimizing the SPR of the gold film. The experimental result agrees well with the calculation.  相似文献   

11.
We report the use of the prism-based surface plasmon resonance (SPR) technique to differentiate between three types of tequilas white or silver, aged, and extra-aged. We used the angular interrogation method in which the structure is based on prism fabricated with BK7 glass coated with a gold layer as the SPR active layer. Our study was centered in the analysis of the resonant angle of the SPR generated by the three types of tequilas produced by the three major tequila-producing firms. We observed that each tequila sample produced a well-differentiated SPR curve. We found that resonant angle of the SPR curve produced by silver tequilas is larger than that produced by the aged and extra-aged tequilas of the same producer firm. We found that the position of the SPR curve is not exclusively determined by the alcohol contents; we believe that there are other parameters derived from the aging process that should be considered. The refractive index of the tequilas used in this study was estimated using the measured resonant angle.  相似文献   

12.
This work presents a new surface plasmon resonance (SPR) instrument based on Kretschmann configuration. This device acquires and processes the reflected SPR image of the sample by using a webcam together with an image processing algorithm that transforms the RGB image in numeric values and correlates the integrated intensity with the refractive index of the solution. Experimental signals were compared with theoretical values and it was found an excellent agreement. In addition, the applicability of the instrument was tested by measuring the refractive index of solutions in a continuous flow mode. Excellent stability and sensitivity of the signal were found in the presence of small changes of the refractive index.  相似文献   

13.
In this paper, surface plasmon spectra of ion influence was investigated by using a fabricated fiber optic sensors, then spectrum subtraction of ion and non-ionic solutions were developed for field applications of total dissolved solids (TDS) estimation. We confirmed the SPR spectral difference between seven ionic and three non-ionic liquid samples, that for the same refractive index, resonance wavelength in SPR spectrum is much higher for ionic samples than that in the case of non-ionic ones due to the ions influence. The positive correlation of ion content and extra resonance wavelength shift has been established for TDS estimation in water. With three groups of water samples investigation and field testing, the proposed SPR technique showed a good performance comparable to the conductivity method.  相似文献   

14.
An extremely sensitive surface plasmon resonance based fiber optic sensor with indium nitride (InN) layer coated on the core of the optical fiber is theoretically analyzed. The proposed sensor exhibits high sensitivity in the near infrared region of spectrum. The optimized value of thickness of InN layer is found to be 70 nm. Possessing high sensitivity of 4493 nm/RIU, the 70 nm thick InN layer based fiber optic SPR sensor illustrates good sensing behavior.  相似文献   

15.
The far-field and near-field properties of a spherical nematic liquid crystal (NLC) coated metal nanoparticle (NPs) have been investigated in an external field, basing on the quasistatic theory. The resonant wavelength is tunable by varying metallic material of core, anisotropy extent and thickness of liquid crystals (LCs). The field enhancement is along the incident polarization near the outer surface of the shell. The direction of field is reverse in the inner surface comparing with the one if outer shell. In contrast to isotropy shell, the surface plasmon resonance (SPR) shows an obvious red shift and field enhancement near outer surface of the shell always is stronger.  相似文献   

16.
Changkui Hu 《Optik》2011,122(21):1881-1884
A surface plasmon resonance (SPR) sensor based on diffraction grating with high sensitivity and high resolution is proposed. The sensitivity of grating coupled SPR sensor based on angular interrogation is enhanced by replacing +1st diffraction order of metallic grating with −1st diffraction order to excite the surface plasmon. To improve the resolution of grating-based SPR sensor, aluminum is used as an SPR-active metal. The reflectivity dip of the Al-based sensor is sharper than an Au-based one, which is the mostly widely used as SPR-active metal. And 3-nm-thick gold film is deposited on the grating surface in order to protect the Al layer from getting oxidized. Numerical simulations show that the sensor not only has high sensitivity and high resolution, but also exhibits good linearity.  相似文献   

17.
A high performance sub-wavelength metallic grating coupled surface plasmon resonance (SWMGCSPR) sensor with metal and porous composite layer is proposed. Rigorous coupled-wave analysis (RCWA) is conducted to prove the design feasibility, characterize the sensor's performance and determine geometric parameters of the structure, which is also employed to compute the electromagnetic (EM) field distributions at the resonant wavelengths. Parameters of sensing platform are optimized to achieve the best performance of the SPR sensor. Obtained results reveal that the proposed structure can excite SPR with negative diffraction order of SWMG. Both wavelength and angular sensitivities are greatly enhanced because surface plasmon wave (SPW) exhibits a large penetration depth which will enlarge the distance of interactions between SP and analytes. The detection sensitivities and quality parameters are estimated to be 700 nm/RIU and 509°/RIU with full width at half maximum (FWHM) less than 2.5 nm using the same optimized structure.  相似文献   

18.
深入浅出地分析了金属表面等离体子振荡形成的机理,利用拉普拉斯方程得到了半无限金属、金属薄膜和球状纳米金属颗粒的表面等离体子振荡频率。  相似文献   

19.
A novel signal processing method of movement direction identification and phase correction is presented for laser heterodyne interferometry. Based on the reference signal, four intervals with phase difference of 90° each other are set up. The real-time movement direction identification and the integer fringe counting are realized by detecting the times that the rising-edge of the measurement signal crosses the intervals. The phase correction approach is proposed in detail to solve the fraction phase compensation when the initial phase difference is not equal to the zero phase difference. Three experiments of the stability test, the nanometer and micrometer displacement tests on bi-directional movement were performed to demonstrate the usefulness and feasibility of the presented signal processing method.  相似文献   

20.
Evanescently coupled resonance in surface plasmon enhanced transmission   总被引:5,自引:0,他引:5  
The optical transmission through subwavelength holes in metal films can be enhanced by several orders of magnitude by enabling interaction of the incident light with independent surface plasmon (SP) modes on either side of the film. Here, we show that this transmission is boosted by an additional factor of 10 when the energies of the SP modes on both sides are matched. These results, confirmed by a three-dimensional theoretical analysis, give a totally new understanding of the phenomenon of SP enhanced transmission. It is found that the holes behave like subwavelength cavities for the evanescent waves coupling the SPs on either side of the film. In this unusual device, the reflection at either end of the cavity is provided by the SP modes which act as frequency dependent mirrors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号