首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajneesh Kaler 《Optik》2011,122(7):610-615
In this paper, we have analyzed the performance and feasibility for the metropolitan area network based on arrayed waveguide grating (AWG) multiplexers and arrayed waveguide grating (AWG) demultiplexers operating at the bitrate of 10 Gb/s. In the network, the data is successfully transmitted to a distance of 50 km with a very low BER of 1 × 10−40 thus improving the performance over AWG star based networks. Here, we have observed that arrayed waveguide gratings based multiplexers and demultiplexers for WDM applications prove to be capable of precise multiplexing and demultiplexing of a large number of channels with relatively low losses. This paper also presents the comparative investigation and suitability of various data formats like NRZ Rectangular, NRZ Raised cosine, RZ Rectangular, RZ Raised cosine and RZ super Gaussian for optical transmission link. It has been shown that RZ Raised cosine yields the highest value of Q, good eye opening and lowest BER.  相似文献   

2.
Jagjit Singh Malhotra 《Optik》2010,121(9):800-807
This paper presents the performance analysis of non-return-to-zero (NRZ), return-to-zero (RZ), chirped return-to-zero (CRZ) and carrier suppressed return-to-zero (CSRZ) data formats in optical soliton transmission link under the impact of chirp and third-order dispersion (TOD). The performance of these data formats has been analyzed on the basis of certain performance metrics, viz, bit error rate (BER), Q2 (dB), OSNR, eye opening, etc. It has been reported here that the performance of CRZ and CSRZ modulation format is better as compared to NRZ and RZ in a soliton transmission link. Further, CSRZ modulation format has been found to deliver optimum performance on the basis of performance evaluation metrics reported in this paper. In case of NRZ and CSRZ, comparatively narrow power spectrum has been observed. Best eye opening, highest value of Q2 (dB) of 18 dB and lowest value of BER of the order of 10−16 has been reported in case of CSRZ among the considered data formats. The results have been obtained by varying noise figure from 3.0 to 9.0. No considerable effect of noise was observed. It was observed that at very narrow and ultra short pulse width, OSNR value suffers heavily and reduced to even negative values in dB, thus inducing a high degree of OSNR power penalty. The results were obtained by varying chirp factor from −0.6 to +0.6. Negative chirp resulted in improved OSNR as compared to positive chirp. RZ data format yielded a broader optical spectrum, comparatively low spectral efficiency and poor OSNR thus it was found that RZ format is not suitable for optical soliton transmission under the impact of chirp and TOD.  相似文献   

3.
Manjit Singh  R.S. Kaler 《Optik》2008,119(8):359-364
We have investigated the return-to-zero (RZ) pulse duty cycle for single-channel Standard Single mode fiber (SSMF), Non Zero Dispersion shifted fibers (normal NZDSF and anomalous NZDSF fiber) for 10 Gbps optical fiber communication system. We give a comprehensive look on the behavior of variable duty cycle optical RZ pulse indicating that lowest bit error rate for duty cycle 0.8 among the duty cycle values 0.2, 0.4, 0.6 and 0.8 investigated for the case of SSMF. The single repeaterless mode fiber length is increased from existing 55 km at duty cycle 0.2 to fiber length 85 km by keeping duty cycle at 0.8. The result is also emphasized through the 10 dB Q value improvement and corresponding improvement in average eye opening diagram. The normal NZDSF show similar improvement but at greater fiber length, it offers BER 10−9 at length 110 km with duty cycle 0.2. NZDSF operating length can further be increased to length 160 km by keeping duty cycle 0.8. The corresponding 8 dB Q value improvement and Average eye opening improvement also supports the result through its graphical variation. Thirdly Anomalous NZDSF for same optical communication system showed that 0.2 duty cycle value give operational length of 130 km which could be extended to 160 km if 0.8 duty cycle is kept. The corresponding 8 dB Q value improvement, average eye-opening improvement endorsed the fact in the graphs.  相似文献   

4.
In this paper, a fiber optic communication system has been employed using co-existing 10 G/2.5 G asymmetric gigabit passive optical network (XG-PON) architecture. In this system, bidirectional optical fiber has been used for upstream and downstream data transmission. The system performance has been investigated for non-return-to-zero (NRZ) and return-to-zero (RZ) data formats operating at varying bit rates by varying the length of the fiber for analyzing the feasibility of this co-existence. The results have been compared for NRZ and RZ formats for upstream and downstream data in terms of Q value and eye opening. It is observed that RZ modulation format is superior as compared to conventional NRZ format and the faithful transmission of signal has been carried up to 90 km at 1577 nm for downstream and 140 km at 1270 nm for upstream.  相似文献   

5.
Ajay K. Sharma  S.K. Wadhwa 《Optik》2009,120(12):614-618
In this paper, the robustness of NRZ, RZ, carrier-suppressed RZ (CSRZ) and chirped RZ (CRZ) modulation formats at 40 Gbps for (OC-786) long haul link on the amplifier noise figure and fiber nonlinearities has been investigated. The investigations reveals that highest Q2(dB) of the order of [20, 25]; [19, 20]; [18, 19] and [16, 18] has been obtained in case of RZ, CSRZ, CRZ and NRZ modulation formats, respectively, in the presence of fiber nonlinearities and with and without amplifier noise figure of 6 dB. It has been observed that Q2(dB) in case of CRZ fluctuate between 18 and 14 at power variation of −10 to 4 dBm and NF of 6 dB, while it is between 19-9, 20-0 and 16-0 in case of CSRZ, RZ and NRZ. It has been identified that CRZ and CSRZ have shown the robustness on fiber nonlinearity and noise at 40 Gbps up to the transmission distance of 450 km. The wide eye opening in case of CRZ modulation also proved the robustness on fiber nonlinearity and noise.  相似文献   

6.
In this paper, the performance evaluation of path-averaged soliton transmission link for various performance measures viz. OSNR, optical power, extinction ratio, bit error rate (BER) and Q factor at different levels of noise figure and values of pulse width (FWHM) has been carried out. The performance of soliton transmission link is studied, taking into account soliton interaction, amplified spontaneous emission (ASE) noise and noise figure. The model presented considers interaction in a random sequence of solitons and the effect of the ASE noise added in each amplification stage. The influence of ASE noise, noise figure and pulse width with different amplifier spacing on the BER and quality factor has been investigated. It has been shown that these play dominant roles in degrading the performance measures. We have demonstrated the capability of path-averaged (guiding-centre) soliton for a long-haul distance of 17,000 km at a bit rate of 10 Gbps without ASE effect and noise figure in each amplifier span length of 500 km. The average value of quality factor is found to be 16.6 dB and the average BER is of the order of 10−12 over the transmission distance of 17,000 km. Further, it has been investigated that a severe system penalty results on the inclusion of ASE effect and noise figure in order to achieve the same level of performance. Thus, the investigations ascertain that in order to maintain the same level of BER and Q factor, the amplifier spacing and total transmission distance reduce considerably.  相似文献   

7.
In optical wavelength division multiplexed (WDM) systems the dispersion management is a key issue. In optical systems a lot of research is going on to reduce dispersion by selecting proper dispersion compensating techniques and proper modulation format for input data. One way to reduce dispersion is by using dispersion compensating fibers in the WDM systems. This paper analyzes the use of RZ super Gaussian pulse inputs for different WDM systems i.e. for conventional, dense and ultra dense WDM systems employing dispersion compensating fibers. The pulse width and the order of the RZ super Gaussian pulse was varied to evaluate the performance at 40 Gb/s. The experiment showed that to get minimum BER, pulse width of 7.5 ps and 10 ps along with third-order RZ super Gaussian pulse were found suitable and recommended to be used.  相似文献   

8.
Manjit Singh  Ajay K. Sharma 《Optik》2010,121(7):609-616
We show the effect of varied order and width of super Gaussian pulse at 10 Gb/s in dispersion compensated optical communication system. The optical communication system consists of standard single-mode fiber of 16 ps/nm/km of a certain length, whose dispersion is compensated using pre-, post- and symmetrical-dispersion compensation schemes with proportionate length dispersion compensating fiber of −80 ps/nm/km. Performance of these three compensation schemes is compared at 14 dBm values of Er-doped fiber amplifiers (EDFA) power at 1st, 2nd and 3rd order RZ super Gaussian optical pulse. The pulse width, full width at half maximum (FWHM) is also varied from 5 to 30 ps to highlight the optimum performance. The graphical results obtained show a relationship among the attributes pulse width, order of RZ super Gaussian optical pulse and dispersion compensation scheme implemented. It shows that to decrease BER and timing jitter in the system, smaller width and 3rd order super Gaussian pulse should be used. It is recommended that to decrease dependency of BER and timing jitter in the communication system on the pulse width i.e. FWHM, the symmetrical compensation scheme should be implemented.  相似文献   

9.
Manjit Singh  Ajay K. Sharma 《Optik》2010,121(7):665-672
We investigate the chirp selection of externally modulated RZ soliton pulse at 10 Gb/s for fiber optical communication systems for the reduction in timing jitter. We have chosen single arm Mach-Zehnder amplitude modulator with sin2 electrical shaped input-output (P-V) characteristic and its chirp range has been varied in the range of −5 to 5. The timing jitter, Q factor and bit error rate (BER) generated for the chirp range has been studied for various fiber lengths and post compensation has been demonstrated to reduce the timing jitter. The number of fixed output amplifiers after every 60 km span is varied from 2 to 10 and corresponding accumulated ASE noise has been studied to manage timing jitter and BER in permissible range, i.e. 5 ps and 10−9, respectively. It is observed that when two fiber spans are taken then the compensating fiber length for the system is less than 20 km for each case of the chirp considered. For 10 fiber spans, the compensating fiber length increases in the range 60-90 km depending upon the value of chirp taken. Finally it is shown that the chirp value of external modulator should be set to either 0 or −1 for externally modulated RZ soliton pulse in 10 Gb/s optical communication system which makes the system more insensitive to the timing jitter and the selection of dispersion compensating fiber length.  相似文献   

10.
In this paper, we present space/wavelength/time single pulse per plane (SPP) codes with direct detection (SPPDD) and implemented it as two dimensional codes by using W2T scheme. We analyze these codes by varying the number of space channels (S) and keeping other two dimensions, wavelength (W) and time (T) constant and report that it gives better results when (W > S). It is found that the space channels S = 2 and S = 3 provide better BER rate than other space channels and also analyze these 3D codes by using different data modulation formats. It is found that OCDMA system with NRZ data modulation format performs better than RZ.  相似文献   

11.

In this article, the simulation results have been presented for dispersive optical communication with different electrical drivers. The length of single-mode fiber has been put in a run that is compensated by dispersion-compensated fiber. The results have been presented and it is observed that of all the electrical drivers, the NRZ rectangular is best suited for dispersive optical communication systems. For this electrical driver, the parameters like BER remain constant and low. For other drivers, the BER decreases more for RZ super-Gaussian. Similarly, the Q factor increases with runs for all types of drivers except for NRZ rectangular, for which it decreases. For all the drivers, it is clear that as the runs are varied, the eye opening penalty increases, that is, there is less eye opening as the length of single-mode fiber is increased. It is also seen that the dispersion-compensated fiber compensates for the dispersion very effectively irrespective of the type of driver. Of the two formats, return to zero (RZ) and non-return to zero (NRZ), the earlier has more eye-opening penalty as the distortion is more and is clearly visible in all the rectangular, super-Gaussian, and raised cosine RZ formats. Of the three RZ formats, it is observed that RZ rectangular has the least eye-opening penalty. The non-return to zero format has less distortion and, of the two rectangular and raised cosine, the NRZ rectangular has less eye-opening penalty.  相似文献   

12.
We experimentally and theoretically demonstrate 40 Gb/s all-optical logic NOR and OR gates based on a semiconductor optical amplifier (SOA) and a blue shifted optical bandpass filter (OBF). Two kinds of data formats are discussed, namely return-to-zero (RZ) format and nonreturn-to-zero (NRZ) format. The logic NOR and OR functions of RZ format are realized at the OBF detuning of −0.22 nm and −0.44 nm, respectively. The logic NOR function of NRZ format is realized at the OBF detuning of −0.24 nm. The simulation is in good agreement with the experimental results when the linewidth enhancement factor is 5.5. The simulation also shows that the SOA with large linewidth enhancement factor is preferred to achieve NOR and OR functions with good performance. The input data signal is of good pulsewidth-tolerance for NOR function, whereas not for OR function. The high Q factor could be obtained at narrow pulses injection.  相似文献   

13.
In optical time-division multiplexing (OTDM) systems using the four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) for time demultiplexing, the polarization states of control pulse and OTDM data lights are an important factor in the optical time demultiplexing process, which can influence the bit error rate (BER) of OTDM systems. In this paper, we analyze the effect of light polarization states on the FWM of a SOA, and use a simulation approach to study the BER performance of 100 Gbit/s OTDM systems that use the FWM in a SOA for optical time demultiplexing. It reveals that the BER or Q factor of OTDM systems is dependent on the misalignment θ between the polarization states of OTDM data and control lights. With increasing θ, both the optical power of resulting FWM component and the BER performance (or Q factor) of OTDM systems is degraded. For linearly polarized lights, our results show that the increase of BER and the reduction in Q factor are made smoothly when θ changes its value from 0° to 75°, whereas the degradation of BER and Q factor becomes rapid when θ exceeds 75°. Although the best system BER is obtained for θ = 0°, the BER performance can still tolerate some misalignment θ (e.g., up to 20° in our simulation). This is useful for the engineering design and applications of SOA-based optical time demultiplexers.  相似文献   

14.
Anu Sheetal  Ajay K. Sharma 《Optik》2010,121(8):739-749
In this paper, simulative analysis of 40 Gb/s long haul (500-2000 km) DWDM system with ultra high capacity upto 1.28 Tb/s has been carried out for carrier-suppressed return-to-zero (CSRZ), duobinary return-to-zero (DRZ) and modified duobinary return-to-zero (MDRZ) modulation formats. The DWDM system has been analyzed for the pre, post and symmetrical dispersion compensation schemes for 16 Channels with 25 GHz channel spacing in order to find the optimum modulation format for a high bit rate optical transmission system. The effect of variation in input power and transmission distances is observed in terms of Q value and eye opening for various formats. It is found that symmetrical compensation is superior to pre and post dispersion compensation schemes. It has also been observed that the performance of DWDM system is severely limited by the four-wave mixing (FWM) effect and is determined that MDRZ format seems to be the best choice for the transmission distance beyond 1550 km despite slightly more complex transmitter and receiver configuration. Further, symmetrical compensation scheme has been investigated for 32×40 Gb/s MDRZ format for faithful transmission over 1450 km.  相似文献   

15.
In this paper the performance effect of a 40 Gb/s Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) is analyzed using different receiver filters namely Integrator filter, Bessel filter, Butterworth filter, Chebyshev filter, Inverse Chebyshev filter, Elliptic filter, Gaussian filter and Rectangular filter. The data rate and channel spacing are taken as 10 Gb/s per channel and 100 GHz, respectively. Among all the investigated filters, Bessel filter is considered to be the best one for WDM-PON network by the obtained BER and Q factor values.  相似文献   

16.
We experimentally demonstrate an all-optical 10 Gb/s format conversion from non-return-to-zero (NRZ) on-off-keying (OOK) to return-to-zero (RZ)-OOK with tunable duty cycle in the whole C-band using nonlinear polarization rotation (NPR) arising in an semiconductor optical amplifier (SOA). The experimental results show that, by tuning the polarizer at the SOA output, an RZ signal with tunable duty cycle from 33% to 66% could be obtained with an extinction ratio(ER) over 10 dB. In addition, we show that the NRZ-to-RZ conversion with duty cycle of 33-66% can be obtained with less than 1 dB power penalty at the bit error ratio (BER) of 10−9. The device can facilitate the cross-connection between optical transmission networks employing different modulation formats.  相似文献   

17.
In this article, the simulation results have been presented for dispersive optical communication with different electrical drivers. The length of single-mode fiber has been put in a run that is compensated by dispersion-compensated fiber. The results have been presented and it is observed that of all the electrical drivers, the NRZ rectangular is best suited for dispersive optical communication systems. For this electrical driver, the parameters like BER remain constant and low. For other drivers, the BER decreases more for RZ super-Gaussian. Similarly, the Q factor increases with runs for all types of drivers except for NRZ rectangular, for which it decreases. For all the drivers, it is clear that as the runs are varied, the eye opening penalty increases, that is, there is less eye opening as the length of single-mode fiber is increased. It is also seen that the dispersion-compensated fiber compensates for the dispersion very effectively irrespective of the type of driver. Of the two formats, return to zero (RZ) and non-return to zero (NRZ), the earlier has more eye-opening penalty as the distortion is more and is clearly visible in all the rectangular, super-Gaussian, and raised cosine RZ formats. Of the three RZ formats, it is observed that RZ rectangular has the least eye-opening penalty. The non-return to zero format has less distortion and, of the two rectangular and raised cosine, the NRZ rectangular has less eye-opening penalty.  相似文献   

18.
Bindiya Jain 《Optik》2010,121(21):1948-1954
This paper reports the effects of pre- and post-compensation using CRZ modulation format in long-haul WDM optical transmission link using wavelengths in three bandwidths viz. 1537.4; 1550; 1562.6 nm at per channel bit rates of 10 Gbit/s. It has been investigated here that optimization of dispersion map results in improved management of nonlinear effects in long-haul light wave systems operating in the quasi-linear regime. In addition, pre- and post-dispersion compensation was applied at the transmitter and receiver depending on the signal wavelength, which resulted in improvement of performance metrics viz. Q2 (dB), BER and OSNR over longer transmission distances. It is reported here that optimum values of Q2 dB of 17.1 dB, BER of 8.4933e−015 and OSNR of 30.1 dB are obtained at 1550 nm at a transmission distance of 7360 km with pre- and post-compensation using CRZ modulation format.  相似文献   

19.
Yogesh Chaba 《Optik》2010,121(9):813-817
In this paper, the dispersion compensation techniques are compared on the basis of eye opening, eye closure, bit error rate and Q-factor. These techniques are applied to CSRZ system, which operates at bit rates of 2.5, 5, 10, 15 and 20 Gbps bit rates. The technique using fiber Bragg grating (FBG) for dispersion compensation is the best technique as this technique gives larger values of eye opening at 10 and 20 Gbps bit rate, smaller values of eye closure at 10 and 20 Gbps, minimum value of BER at 15 Gbps and maximum value of Q-factor at 15 Gbps when compared with other techniques. The RDF technique is the next best technique since this technique gives maximum value of eye opening when other techniques give almost similar values of eye opening at 15 Gbps, minimum value of eye closure at 15 Gbps, minimum value of BER at 15 Gbps and maximum value of Q-factor at 15 Gbps when compared with other techniques. The DCF is the next best technique as this technique gives maximum and minimum values of eye opening and eye closure at 20 Gbps (next best to FBG at 20 Gbps).  相似文献   

20.
Anu Sheetal  Ajay K. Sharma 《Optik》2010,121(3):246-252
In this paper, 10 and 40 Gb/s optical systems have been investigated for nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ) and RZ-differential phase-shift-keying (RZ-DPSK) data formats. For the range of the optical signal power from −5 to 15 dBm, a maximum self-phase modulation (SPM)-limited transmission distance LSPM is determined with eye-opening penalty (EOP) >1 dB .The observations are based on the modeling and numerical simulation of optimum dispersion-managed transmission link. Transmission over distances of the order of several hundreds of kilometers has been shown with and without amplified spontaneous emission (ASE) noise of the in-line erbium-doped fiber amplifiers (EDFAs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号