首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A sinusoidal phase-modulating (SPM) laser diode (LD) interferometer for real-time surface profile measurement is proposed and its principle is analyzed. The phase signal of the surface profile is detected from the sinusoidal phase-modulating interference signal using a real-time phase detection circuit. For 60 × 60 measurement points of the surface profile, the measuring time is 10 ms. A root mean square (RMS) measurement repeatability of 3.93 nm is realized, and the measurement resolution reaches 0.19 nm.  相似文献   

2.
Movements of a surface profile are measured with a two-grating interferometer using sinusoidal phase-modulation. Since sinusoidal phase-modulating (SPM) interferometry can record a phase change due to the movement of an object in the interference signal, the SPM interferometer is suitable for measuring the movement of the object. Some experiments show that the two-grating interferometer can measure a sinusoidal vibration with amplitude of several tens of microns and a step movement with a magnitude of several microns.  相似文献   

3.
物体表面形貌的正弦相位调制实时干涉测量技术研究   总被引:1,自引:0,他引:1  
何国田  王向朝  曾爱军 《光学学报》2007,27(11):1997-2002
表面形貌干涉测量技术是一种高精度的非接触式测量技术,在工业生产和科学研究中具有广泛的应用。提出一种实时测量表面形貌的正弦相位调制干涉测量新技术。该技术用激光二极管作光源,用自制的高速图像传感器探测干涉信号,通过信号处理电路实时解相得到被测表面所对应的相位分布,实时分析相位获得物体表面形貌。该技术消除了光强和部分外界干扰的影响,提高了系统的测量精度。楔形光学平板表面形貌的测量结果表明,测量点为60×60个的情况下,测量时间小于8.2 ms,重复测量精度(RMS)为4.3 nm。  相似文献   

4.
We propose a simple and efficient approach to obtain all-optical RZ-to-NRZ data format conversion using self-phase modulation (SPM) in a dispersion-shifted fiber. By exploiting SPM induced spectral broadening together with group velocity dispersion in the normal regime, a 10 Gb/s return-to-zero data signal has been converted to the non-return-to-zero format. The proposed scheme can work with different signal bit rates and does not require any external pulse duplicator. The 10 Gb/s bit-error-rate (BER) measurement shows a power penalty of less than 1.5 dB at 10−9 BER level.  相似文献   

5.
We describe the performance of a compact single-shot low-coherence interferometric scheme that can be capable of measuring three-dimensional surface profiles and shape. This technique utilizes a polarizing Michelson interferometer and a four-channel polarization phase-stepper optics, which is based on a paired wedge prism, a combined wave plate and a Wollaston prism. The coherence gated surface image can be calculated by the simultaneous acquisition of two interferograms and a DC image on a single CCD camera. The image calculation is based on a novel algorithm to calibrate the imbalanced intensity as well as the deviated arbitrary relative phase of each of the imaging channels. The system can display the transverse cross-sectional images in real-time. To demonstrate the feasibility of this system, a Japanese coin is presented as a 3-D shape measurement example with an image size of 4 mm (horizontal) × 4 mm (vertical) × 160 μm (depth).  相似文献   

6.
Magnetic properties of cobalt chromite nanoparticles of size 8-12 nm synthesized through conventional coprecipitation route are reported. Magnetization versus temperature measurement plot reveals a transition from paramagnetic to superparamagnetic (SPM) phase in contrast with the transition from paramagnetic to long-range ferrimagnetic phase at Curie temperature, Tc, reported in bulk. The blocking temperature, Tb, of SPM phase is found to be 50-60 K. On cooling in the presence of 10 kOe field these nanoparticles show an enhancement in coercivity and shifting of loop at 10 K, which is absent at 50 K. While the later observation supports the blocking temperature of the SPM phase, the former one is attributed to a disordered spin configuration at the surfaces and the distribution of nanoparticle sizes.  相似文献   

7.
In-process measurement has been the requirement of the precision industries, but due to vibrations while manufacturing, in-process measurement has been difficult to achieve. There is little work on in-process measurement using phase shifting interferometry, as phase shifting is extremely sensitive to vibrations. In this work, the advantage of the developed non-mechanical and instantaneous phase shifting interferometry is felt while measuring surface profile of large flat surfaces under vibrating conditions which can be extended for in-process measurement of surface profile. A near common path optical configuration is achieved and the effect of the environment is reduced. Moreover, the measurement of phase is instantaneous which increases the versatility of this technique for measuring vibrating objects. Profile measurements were carried out on a smooth mirror surface excited with vibrations of different frequencies and the technique was found to be immune to vibrations of up to 1000 Hz.  相似文献   

8.
In order to overcome the measurement and calculation difficulty for aspheric surface with phase retrieval technology, an improved phase retrieval algorithm was proposed. Due to significant departure from sphere surface, reflected light from different part of the aspheric surface under test will overlap in some areas in the collected images by CCD with general phase retrieval measurement setup, which will lead to the failure to recover the surface phase. The proposed algorithm will only use those areas without light overlapping in each image in the iteration process and employ several defocused images to recover the whole surface. This algorithm can improve the measurement range for aspheric surface with phase retrieval technology. The experimental system was established and a 180 mm diameter, f/1.6 parabolic mirror and a 180 mm effective diameter, f/1.33 hyperboloid mirror were tested by the proposed method. The experimental results show that the retrieved surface errors are in good consistent with that obtained by interferometer, which confirms the validity of the proposed algorithm.  相似文献   

9.
A calibration technique for high-frequency hydrophone utilizing a heterodyne interferometer is presented in this article. The calibration system is mainly composed of optical and signal processing modules. In the displacement measurement, a pellicle is mounted at the surface of water to avoid acousto-optical interaction. The phase modulated carrier signal is digitized and transferred to the computer, then processed by digital phase demodulation. A phase unwrapping algorithm is employed to remove ambiguity of the arctangent function and has proven effective in large displacement measurements. Pellicle displacement and voltage output of the hydrophone in focused ultrasonic field are processed by DFT to determine the amplitudes of the fundamental and harmonic components. Experiments show that the heterodyne technique can provide hydrophone calibration up to 40 MHz, with a slightly smaller sensitivity compared with the National Physical Laboratory (NPL) calibration results for most frequency ranges. Since the heterodyne technique is independent on assumptions about the geometry of the ultrasonic field and the performance of the transducer, it can be easily extended to high frequency and high power ultrasound measurement applications.  相似文献   

10.
干涉仪环境振动的外差检测与自适应控制   总被引:8,自引:6,他引:2  
吴栋  朱日宏  陈磊  何勇  姬会东 《光子学报》2004,33(12):1493-1496
测试环境的微振动干扰会引起干涉图的抖动,影响移相干涉仪的测量准确.设计了一种内嵌于移相干涉仪的外差测振光路,对干涉仪所受环境微振动进行实时检测;采用单片RF/IF集成芯片对两路40 MHz的模拟外差信号直接进行比相,简化了通常使用的数字测相方法.在测得环境振动信息后,运用DSP技术和自适应信号处理的方法,实现了基于PZT移相器的自适应振动控制,实验结果表明干涉仪对幅频积不大于100 waves·Hz的环境振动的抑制能力达-39 dB.  相似文献   

11.
We present a high-resolution laser interferometer based on the parallel multipass configuration with a pair of right-angle prisms to increase the optical fringe subdivision order up to 21. In the experiment, a multipass homodyne Michelson interferometer (MHMI) with the fringe spacing of 15 nm was demonstrated, resulting in the displacement measurement with a measurement resolution of 180 pm limited by the sampling rate of the employed analog-to-digital converter. We show that the ultimate resolution of the demonstrated MHMI scales with 1/N and it is estimated to be 8.7 pm for N = 21.  相似文献   

12.
Presented work introduces methods for improving linearity of a heterodyne laser interferometer system. The heterodyne configuration exhibits high potential in demanding applications, like pico/nano positioning. Those applications require superior accuracy, more difficult to obtain in a homodyne configuration of the laser interferometer. The homodyne setup is more susceptible to external light, variation of DC offset and higher noises, especially the 1/f noise. Those issues are filtered out in the heterodyne configuration. The main disadvantage of heterodyne setup are higher measurement nonlinearities. In this paper there are first introduced sources of nonlinearities and their impact on the overall accuracy. According to those findings there are proposed techniques to eliminate error caused by parasite beams, i.e. nonlinearities. Presented method is based on digital signal processing and is reliable and easy to use. In the shown approach the nonlinearities correction is completely automatic. Such system is applicable for X/Y positioning stages. Presented configuration of the laser interferometer is able to track the displacement with 100 pm resolution up to 7 m/s of translation velocity. The resolution can be improved to 10 pm by limitation of maximal velocity. In the paper there is confirmed that errors caused by nonlinearities are in range of ±0.6 nm. Achieved accuracy is comparable to capacitance gauges with presented laser interferometer having much better dynamic range.  相似文献   

13.
A self-mixing interferometer is proposed to measure nanometre-scale optical path length changes in the interferometer’s external cavity. As light source, the developed technique uses a blue emitting GaN laser diode. An external reflector, a silicon mirror, driven by a piezo nanopositioner is used to produce an interference signal which is detected with the monitor photodiode of the laser diode. Changing the optical path length of the external cavity introduces a phase difference to the interference signal. This phase difference is detected using a signal processing algorithm based on Pearson’s correlation coefficient and cubic spline interpolation techniques. The results show that the average deviation between the measured and actual displacements of the silicon mirror is 3.1 nm in the 0–110 nm displacement range. Moreover, the measured displacements follow linearly the actual displacement of the silicon mirror. Finally, the paper considers the effects produced by the temperature and current stability of the laser diode as well as dispersion effects in the external cavity of the interferometer. These reduce the sensor’s measurement accuracy especially in long-term measurements.  相似文献   

14.
Guotian He  Xiangzhao Wang 《Optik》2009,120(3):101-105
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS.  相似文献   

15.
Zhijun Li 《Optics Communications》2008,281(18):4744-4746
Based on Michelson interferometer and phase generated carrier (PGC) homodyne demodulation technique, an optical interferometer system is built, and a novel method using the central angles of Lissajous figures to measure micro-vibration displacement is proposed. The Lissajous figures are obtained by synthesizing two interferometric signals that their vibration directions are orthogonal and their intensities are equal. Through theoretical analysis, software simulation and experimental test, it is concluded that the central angles of Lissajous figures have a linear relationship with the phase modulation coefficients and the micro-vibration displacements when the phase modulation coefficients are small. So the micro-vibration displacements can be directly obtained by measuring the central angles of Lissajous figures. The method is simple and convenient. The experimental results indicate that the micro-vibration displacements measuring range can reach 5-775 nm, with a resolution of about 5 nm.  相似文献   

16.
The instrument forward model of the modified super-wide-Sagnac imaging interferometer based on liquid crystals on Silicon (MSASII-LCoS) is developed as an integrated code package with Matlab language to simulate the images of satellite observations. There are five sub-models in the forward model including radiation model of O(1S), orbit attitude, filter, interferometer and array detector. The principle of each sub-model is described separately and then the overall forward model equation is derived. The four simulation images are obtained. Based on the integrated signal level for the daytime observations, the apparent measurement error of wind is less than 3 m/s and the signal noise ratio (SNR) is greater than 194 with a binning of 2 × 25 pixels at the tangent height range of 70-190 km.  相似文献   

17.
A highly stabilised vibration-displacement measurement system, which employs fiber Bragg gratings (FBGs) to interleave two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. The phase change in the interferometric signals of the two fiber Michelson interferometers have been tracked, respectively, with two electronic feedback loops. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the environmental disturbances. The second fiber interferometer is used to perform the measurement task and employs another electronic feedback loop to track the phase change in the interferometric signal. The measurement system is able to measure vibration-displacement and provide the sense of direction of the displacement. The frequency range of the measured vibration-displacement is from 0.1 to 200 Hz and the measurement resolution is 10 nm.  相似文献   

18.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

19.
The group refractive index of BK-7 glass material is accurately measured using a tandem low-coherence interferometer, which is composed of a Mychelson interferometer and a Fizeau interferometer, within a combined standard uncertainty of 8.4 ppm. The experimental results are compared with the value calculated from the conventional data base on the phase refractive index, within a difference of about 4.7 ppm. This new method is applicable to in situ measurement due to the principle of its common optical path.  相似文献   

20.
The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号