首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of Li, Na, and K with N-(4′-benzo-15-crown-5)-2-(amino-N-tosyl)-phenylaldimine (L) are synthesized and their IR spectra are studied with assignment of the basic vibration frequencies of the ligand and complexes. The conformation states of macrocycles in the title complexes are analyzed. The macrocycle conformation in complexes of L with the Li, Na, and K salts is not influenced by the nature of a metal or acido ligands. The structures of the synthesized compounds are suggested on the basis of the spectral and elemental analysis data.__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 7, 2005, pp. 512–517.Original Russian Text Copyright © 2005 by Ivanova, Dorokhov, Pyatova, Bicherov, Burlov, Garnovskii, Tsivadze.  相似文献   

2.
Lithium and sodium complexes of dimethyl ether (DME) and dimethoxyethane (DXE) were produced by reactions of laser-vaporized metal atoms with organic vapors in a pulsed nozzle cluster source. The mono-ligand complexes were studied by photoionization and pulsed field ionization zero electron kinetic energy (ZEKE) spectroscopy. Vibrationally resolved ZEKE spectra were obtained for Li(DME), Na(DME) and Li(DXE) and a photoionization efficiency spectrum for Na(DXE). The ZEKE spectra were analyzed by comparing with the spectra of other metal-ether complexes and with electronic structure calculations and spectral simulations. Major vibrations measured for the M(DME) (M=Li,Na) ions were M-O and C-O stretches and M-O-C and C-O-C bends. These vibrations and additional O-Li-O and O-C-C-O bends were observed for the Li(DXE) ion. The M(DME) complexes were in C2v symmetry with the metal atom binding to oxygen, whereas Li(DXE) was in a C2 ring configuration with the Li atom attaching to both oxygen atoms. Moreover, the ionization energies of these complexes were measured from the ZEKE or photoionization spectra and bond dissociation energies were derived from a thermodynamic cycle.  相似文献   

3.
The gas phase structures of cationized histidine (His), including complexes with Li(+), Na(+), K(+), Rb(+), and Cs(+), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser, in conjunction with quantum chemical calculations. To identify the structures present in the experimental studies, measured IRMPD spectra are compared to spectra calculated at B3LYP/6-311+G(d,p) (Li(+), Na(+), and K(+) complexes) and B3LYP/HW*/6-311+G(d,p) (Rb(+) and Cs(+) complexes) levels of theory, where HW* indicates that the Hay-Wadt effective core potential with additional polarization functions was used on the metals. Single point energy calculations were carried out at the B3LYP, B3P86, and MP2(full) levels using the 6-311+G(2d,2p) basis set. On the basis of these experiments and calculations, the only conformation that reproduces the IRMPD action spectra for the complexes of the smaller alkali metal cations, Li(+)(His) and Na(+)(His), is a charge-solvated, tridentate structure where the metal cation binds to the backbone carbonyl oxygen, backbone amino nitrogen, and nitrogen atom of the imidazole side chain, [CO,N(α),N(1)], in agreement with the predicted ground states of these complexes. Spectra of the larger alkali metal cation complexes, K(+)(His), Rb(+)(His), and Cs(+)(His), have very similar spectral features that are considerably more complex than the IRMPD spectra of Li(+)(His) and Na(+)(His). For these complexes, the bidentate [CO,N(1)] conformer in which the metal cation binds to the backbone carbonyl oxygen and nitrogen atom of the imidazole side chain is a dominant contributor, although features associated with the tridentate [CO,N(α),N(1)] conformer remain, and those for the [COOH] conformer are also clearly present. Theoretical results for Rb(+)(His) and Cs(+)(His) indicate that both [CO,N(1)] and [COOH] conformers are low-energy structures, with different levels of theory predicting different ground conformers.  相似文献   

4.
Manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and chromium(III) complexes of (E)-2-(2-(2-hydroxybenzylidene)hydrazinyl)-2-oxo-N-phenylacetamide were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment. Mononuclear complexes are obtained with 1:1 molar ratio except [Mn(HOS)(2)(H(2)O)(2)] and [Co(OS)(2)](H(2)O)(2) complexes which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a monobasic bidentate one and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the carbonyl oxygen atom, azomethine nitrogen atom and the hydroxyl oxygen. Moreover, the ligand behaves as a dibasic tridentate and coordination occurs via the enolic oxygen, azomethine nitrogen and the hydroxyl oxygen atoms. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complexes possesses a square planar geometry. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes. The protonation constant of the ligand and the stability constant of metal complexes were determined pH-metrically in 50% (v/v) dioxane-water mixture at 298 K and found to be consistent with Irving-Williams order. Moreover, the minimal inhibitory concentration (MIC) of these compounds against Staphylococcus aureus, Escherechia coli and Candida albicans were determined.  相似文献   

5.
合成了一个新型香豆素/Betti碱主体化合物1,并对其进行了结构表征。在乙腈/水溶液中进行主体1和碱金属、碱土金属相关离子(Li+,Na+,K+,Rb+,Cs+,Be2+,Mg2+,Ca2+,Sr2+,Ba2+)的相互作用研究时,发现仅Rb+,Ba2+离子对主体1有敏感的紫外光谱及荧光光谱响应,而其它的碱金属、碱土金属离子无敏感性光响应。紫外光谱显示,Rb+,Ba2+离子使主体1产生明显的红移(ε=4.66×102L·(mol·cm)-1,Δ=91nm),肉眼可观察到明显的由浅黄向橙红色的颜色变化,并使主体1的荧光光谱发生一定程度的猝灭。  相似文献   

6.
Two [(bpy)Re(CO)3L]+ complexes (bpy = 2,2'-bipyridine), where L contains an aza-15-crown-5 ether which is linked to Re via an alkenyl- or alkynyl-pyridine spacer, have been synthesised along with model complexes. Solutions of the complexes in acetonitrile have been studied by UV-Vis absorption spectroscopy, and by 1D and 2D 1H NMR spectroscopy. Strong UV-Vis bands, assigned to intraligand charge-transfer transitions localised at the L ligands, blue shift on protonation of the azacrown nitrogen atom or on complexation of alkali-metal (Li+, Na+ and K+) or alkaline-earth metal (Mg2+, Ca2+ and Ba2+) cations to the azacrown; the magnitude of the blue shift is dependent on the cation, with protonation giving the largest shift of ca. 100 nm. Cation binding constants in the range of log K= 1-4 depend strongly on the identity of the metal cation. Protonation or cation complexation causes downfield shifts in the 1H NMR resonances from most of the azacrown and L ligand protons, and their magnitudes correlate with those of the blue shifts in the UV-Vis bands; shifts in the azacrown 1H NMR resonances report on how the different metal cations interact with the macrocycle. UV-Vis and 1H NMR spectra of the free L ligands enable the effect of the Re centre to be assessed. Together, the data indicate that the alkene spacer gives a more responsive sensor than the alkyne spacer by providing stronger electronic communication across the L ligand.  相似文献   

7.
利用Gaussian-94计算程序,B3LYP方法,6-311+G(2d)6d基组,对SiOM(M=Li,Be,B,Na,Mg,Al)诸体系的几何结构进行优化.结果表明,M既可与SiO中的Si键合,也可与O键合.第一和第二主族的SiOM体系以折线形构型为最稳定构型,而第三主族则以近直线形或直线形构型为最稳定构型.从Si-O间键长RSiO、力常数fSiO及自然键轨道分析可知,第一主族的SiOLi和SiONa的最稳定构型中SiO-M间的离子键成分较大,可近似看作离子键;而对SiOLi,SiOBe,SiOB和SiOMg体系的以Si为中心的构型,M-SiO间的离子键成分很小,不能看作离子键,可认为M与SiO之间存在着弱相互作用  相似文献   

8.
Several amino acid ester cyclohexyl phosphoramidates of AZT as anti-HIV prodrugs were synthesized and investigated by electrospray ionization tandem mass spectrometry (ESI-MS(n)). A novel methoxy group migration from the carbonyl group to the phosphoryl group was observed in ESI-MS2. This migration is believed to be a general pathway for ions with a methyl ester moiety at the gamma-position to a phosphoric acid moiety, which is assisted with metal ions such as Li(+), Na(+) and K(+). Coordination between metal ions with both the carbonyl oxygen and phosphoryl oxygen might be a key factor responsible for this migration.  相似文献   

9.
The trifunctional ligand, 2,6-bis(diphenylphosphorylmethyl)-4-methylphenol (L 2), forms complexes with cerium(III) nitrate having a ligand to metal ratio of 1: 1, 2: 1, and 3: 1. The structures of these complexes in the solid state and in solution were studied by X-ray diffraction, IR and NMR (1H and 31P) spectroscopy, and conformational analysis (molecular mechanics). The 2: 1 complexes of L 2 with lanthanum(III) and neodymium(III) nitrates were synthesized and characterized. In all complexes, the neutral ligand is coordinated through both phosphoryl oxygen atoms. The hydroxy oxygen atom is coordinated only in some complexes, and the hydrogen atom of the hydroxy group is involved in hydrogen bonding. The compositions and structures of the resulting complexes depend on the method of synthesis and the nature of solvent. The ligand was found to undergo easy inner-sphere oxidation. The structure of one of the transformation products was established by X-ray diffraction. Unlike the coordinated ligand, the free ligand is very stable to oxidation. Dedicated to Corresponding Member of the Russian Academy of Sciences T. A. Mastryukova. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2440–2454, November, 2005.  相似文献   

10.
Two new mononuclear FeII complexes, [(L52aH)FeII](PF6)2 (1-(PF6)2) and [(L52a)FeII]BPh4 (2-(BPh4)) have been synthesized with the new aminopyridyl ligand bearing a pivaloylamido arm L52aH (2,2-dimethyl-N-[6-({[2-(methyl-pyridin-2-ylmethyl-amino)-ethyl]-pyridin-2-ylmethyl-amino}-methyl)-pyridin-2-yl]-propionamide), or its deprotonated form L52a-. The structures of the ferrous complexes have been determined by X-ray analysis. The mononuclear FeII is in a pseudo-octahedral environment in both complexes, the six positions around the metal center being occupied by five nitrogen atoms and one oxygen atom from the ligand. Whatever the protonation state of the amide function, the structures are very similar, the FeII being 6-fold coordinated by the two amines, three pyridines, and the oxygen atom from the ligand. These two complexes exhibit an acid/base equilibrium in solution that has been studied by UV-vis spectroscopy and cyclic voltammetry in acetonitrile. The reactivity of 1-(PF6)2 with H2O2 in methanol affords the formation of a new low-spin FeIII(OOH) intermediate in which the oxygen atom is retained in the coordination sphere of the metal.  相似文献   

11.
Nemykin VN  Basu P 《Inorganic chemistry》2005,44(21):7494-7502
The oxygen atom transfer (OAT) reactivity of TpMoO2Cl with PMe3, PEt3, and PPhMe2 (where Tp = hydrotris(3,5-dimethylpyrazol-1-yl)borate) has been investigated. The OAT reactions proceed through a diamagnetic Mo(IV) phosphoryl intermediate complex of general formula TpMoOCl(OPR3) (OPR3 = OPMe3, OPEt3, OPPhMe2), which have been isolated and characterized by 1H and 31P NMR, UV-visible, and infrared spectroscopies and electrospray ionization mass spectrometry. Solid-state crystal structures of TpMoOCl(OPMe3) and TpMoOCl(OPPhMe2) are also reported, the oxygen-to-phosphorus distances agree with a double-bond formulation and a single bond between the metal and the phosphoryl oxygen atom. The stability of the phosphoryl intermediate complexes depends on the steric properties of the coordinated phosphine-oxides. These intermediate complexes have been converted to solvent-coordinated species, TpMoOCl(solv) (solv = acetonitrile or dmf), and the coordinated solvents exchange with the bulk solvent.  相似文献   

12.
A [(bpy)Re(CO)3L+] complex (bpy = 2,2'-bipyridine) in which L contains a phenyl-azacrown ether that is attached to Re via an amidopyridyl linking group has been studied by steady state and nanosecond time-resolved resonance Raman spectroscopy. Vibrational band assignments have been aided by studies of model complexes in which a similar electron-donating dimethylamino group replaces the azacrown or in which an electron-donor group is absent, and by density functional theory calculations. The ground state resonance Raman spectra show nu(bpy) and nu(CO) bands of the (bpy)Re(CO)3 group when excitation is exclusively in resonance with the Re --> bpy metal-to-ligand charge-transfer (MLCT) transition, whereas L ligand bands are dominant when it is in resonance with the strong intra-ligand charge-transfer (ILCT) transition present for L ligands with electron-donor groups. Transient resonance Raman (RR) spectra obtained on single color (385 nm) pulsed excitation of the complexes in which an electron-donor group is absent show bpy*- bands of the MLCT excited state, whereas those of the complexes with electron-donor groups show both bpy*- bands and a down-shifted nu(CO) band that together are characteristic of an L-to-bpy ligand-to-ligand charge-transfer (LLCT) excited state. Samples in which a metal cation (Li+, Na+, Ca2+, Ba2+) is bound to the azacrown in the ground state show bands from both excited states, consistent with a mechanism in which the LLCT state forms after metal cation release from the MLCT state. Nanosecond time-resolved RR spectra from two-color (355 nm pump, 500 nm probe) experiments on the electron-donor systems show L-ligand bands characteristic of the LLCT state; the same bands are observed from samples in which a metal cation is bound to the azacrown in the ground state, and their time dependence is consistent with the proposed mechanism in which the rate constant for ion release in the MLCT state depends on the identity of the metal cation.  相似文献   

13.
A novel bis-beta-diketone organic ligand, 1,1'-(2,6-bispyridyl)bis-3-(p-methoxyphenyl)-1,3-propanedione (L1) and its derivatives, a novel bispyrazole ligand, 2,6-bis(5-(4-methoxyphenyl)-1H-pyrazol-3-yl)pyridine (L2) were designed and synthesized and their complexes with Tb(III) ion were successfully prepared. The ligands and the corresponding metal complexes were characterized by elemental analysis, infrared, proton nuclear magnetic resonance spectroscopy and TG-DTA. Analysis of the IR spectra suggested that the lanthanide metal ion Tb(III) coordinated to the ligands via the nitrogen atom of the pyridine ring and the carbonyl oxygen atoms for ligand L1 and the nitrogen atom of the pyrazole ring for ligand L2. The fluorescence properties of the two complexes in solid state were investigated and it was discovered that the Tb(III) ions could be sensitized by both the ligand (L1) and ligand (L2) to some extent. In particular, the complex of ligand (L2) is a better green luminescent material that could be used as a candidate material in organic light-emitting devices (OLEDs) since it could be much better sensitized by the ligand (L2), and the fluorescence intensity of Tb(III) complex of L2 are almost as twice strong as L1's.  相似文献   

14.
The metal ions Co(II), Ni(II), Zn(II), Zr(IV), and Hg(II) reacted with synthesized Schiff base (L) in mole ratios 1:2 (M:L) formed metal complexes. The structure of the prepared compounds was identified based on the data obtained from elemental analyses, magnetic measurement, melting point, conductivity, Fourier-transform infrared, UV–Vis., nuclear magnetic resonance spectroscopy, X-ray diffraction (XRD) spectra, and thermal analysis (TG/DTG [thermogravimetric/differential thermal analysis]). The results indicate that the L bound as bidentate through the oxygen atom of the hydroxyl group and nitrogen atom of the azomethine group with the metal ions and the complexes is electrolyte in nature. TG/DTG studies confirmed the chemical formula for complexes. The kinetic and thermodynamic parameters such as E*, ΔH*, ΔS*, and ΔG* were determined by using Coats–Redfern and Horowitz–Metzger methods at n = 1 and n ≠ 1. The XRD patterns exhibited a semicrystalline nature lying between the amorphous and crystalline nature for L, (D), and (E), but the complexes (A), (B), and (C) possessed a crystalline character. Density functional theory confirmed the structural geometry of the complexes. In vitro antimicrobial activities were performed for L and its metal complexes.  相似文献   

15.
Muzikár M  Havel J  Macka M 《Electrophoresis》2002,23(12):1796-1802
Stability constants of K, Na, Ca, and Ba with 18-crown-6, K, Na, Li with sulfated beta-cyclodextrin and K, Li, Ca, Mg, Sr, and Ba ions with ([2-hydroxy-1,1-bis(hydroxymethyl) ethyl]-amino)-1-propanesulfonic acid (TAPS) were determined by capillary electrophoresis and computed using a general least squares minimizing program CELET. The results for 18-crown-6 agreed well with those evaluated by graphical methods or reported in the literature. Previously unknown stability constants of sulfated beta-cyclodextrins and TAPS determined for alkali and alkaline earth metals show that sulfated beta-cyclodextrin interacts with monovalent metals allowing to manipulate their effective mobility. It interacts stronger with divalent metal cations. TAPS, as zwitterionic buffer widely used in various analytical, biochemical and other applications, forms complexes with alkali and alkaline earth cations, and although the stability constants are rather low, the equilibria should be taken into account when TAPS is used and metal cations are present in solution at the same time.  相似文献   

16.
Structures of LiSCN, NaSCN, KSCN, RbSCN, and CsSCN complexes with 3',5'-difluoro-4'-hydroxybenzyl-armed monoaza-15-crown-5 ether (5) were investigated. The Li+ and Na+ complexes are (1:1)n polymer-like complexes bridged by hydrogen bonding. On the other hand, the K+, Rb+, and Cs+ complexes are polymer-like complexes bridged by the fluorine atoms of the side arms. The titration calorimetry and 19F NMR titration experiments suggest that one or both fluorine atoms along with the oxygen atom of the phenolic OH group coordinate to the alkali metal ions incorporated in the crown part of a second armed ligand to give polymer-like complexes in solution. The FAB-MS data indicated that larger alkali metal ions form more stable polymer-like complexes.  相似文献   

17.
Three phosphines and their corresponding oxides bearing one 2-pyridone ring and two benzene rings were synthesized. Their single-crystal X-ray analyses exhibited three kinds of molecular aggregation: bimolecular aggregates, chiral one-dimensional structures, and achiral one-dimensional structures. In the bimolecular aggregate of (2-oxo-1, 2-dihydro-x-pyridyl)diphenylphosphines (x = 3: 2a and 6: 2c), cyclic dimers that are derived from two 2-pyridone rings are observed. In contrast, (2-oxo-1,2-dihydro-5-pyridyl)diphenylphosphine (2b) molecules form a chiral one-dimensional chain via intermolecular hydrogen bonding. In the case of phosphine oxides, their oxygen always acts as a hydrogen acceptor of the hydrogen bonding. Thus, (2-oxo-1,2-dihydro-x-pyridyl)diphenylphosphine oxides (x = 3: 3a and 5: 3b) form hydrogen bonds intermolecularly between the oxygen atom on the phosphoryl group and the hydrogen atom on nitrogen to construct a chiral or an achiral one-dimensional chain. Interestingly, (2-oxo-1,2-dihydro-6-pyridyl)diphenylphosphine oxide (3c) exists as a 2-hydroxypyridine form (enol form) in a crystalline state, and intermolecular hydrogen bonds between the phosphoryl oxygen and the hydroxy proton construct an achiral one-dimensional chain.  相似文献   

18.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

19.
The synthesis, characterization and diuretic activity of four new biologically active complexes of Mg(II) and VO(II) with bidentate Schiff base ligand acetazolamide–salicylaldimine (L) obtained from the inserted condensation of 5-acetamido-1,3,4-thiadiazole-2-sulphonamide (acetazolamide) with salicylaldehyde in a 1:1 molar ratio have been reported. Using this bidentate ligand complexes of Mg(II), Mn(II), Fe(II) and VO(II) with general formula ML2 have been synthesized. The synthesized complexes were characterized by several techniques using elemental analysis, FT-IR, electronic spectra, TGA, mass, particle size analysis and molar conductance measurements. The elemental analysis data suggest the stoichiometry to be 1:2 [M:L]. The molar conductance measurements suggest non-electrolytic nature of the complexes. Infrared spectral data agreed with the coordination to the central metal ion through deprotonated phenolic oxygen and azomethine nitrogen atoms. On the basis of spectral studies, octahedral geometry is suggested for Mg(II), Mn(II), Fe(II) and square pyramidal geometry is suggested for VO(II) complexes. The pure drug, synthesized ligand and metal(II) complexes were screened for their antimicrobial activities against Eschericia coli, Bacillus subtilis, Aspergillus niger and Aspergillus flavous. The results show that the metal complexes were more active than the ligand and pure drug against these microbial species as expected. The ligand and its Mg(II) complexes was screened for their diuretic activity also.  相似文献   

20.
Potentially hexadentate phosphoryl podands 1,2-bis[2-((2-diphenylphosphorylmethyl)phenoxy) ethoxy]cyclohexane (L), 1,2-bis[2-((2-diphenylphosphoryl)phenoxy)ethoxy]cyclohexane (L1), and 1,2-bis[2-((2-diphenylphosphorylmethyl)phenoxy)ethoxy]benzene (L2) are synthesized. Stability constants of complexes formed by L, L1, and L2 with alkali-metal 2,4-dinitrophenolates in mixed THF—CHCl3 solutions (4: 1 by volume) are determined. Electroanalytical characteristics of ion-selective electrodes with hexadentate phosphoryl podands having different structures used as active components of their plasticized membranes are compared for cations of alkali and alkaline-earth metals. The IR spectra are described. The crystal structure of L is studied by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号