首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this paper, three new families of eighth-order iterative methods for solving simple roots of nonlinear equations are developed by using weight function methods. Per iteration these iterative methods require three evaluations of the function and one evaluation of the first derivative. This implies that the efficiency index of the developed methods is 1.682, which is optimal according to Kung and Traub’s conjecture [7] for four function evaluations per iteration. Notice that Bi et al.’s method in [2] and [3] are special cases of the developed families of methods. In this study, several new examples of eighth-order methods with efficiency index 1.682 are provided after the development of each family of methods. Numerical comparisons are made with several other existing methods to show the performance of the presented methods.  相似文献   

2.
This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.  相似文献   

3.
New symmetric DIRK methods specially adapted to the numerical integration of first-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test model we derive the dispersion conditions for symmetric DIRK methods as well as symmetric stability functions with real poles and maximal dispersion order. Two new fourth-order symmetric methods with four and five stages are obtained. One of the methods is fourth-order dispersive whereas the other method is symplectic and sixth-order dispersive. These methods have been applied to a number of test problems (linear as well as nonlinear) and some numerical results are presented to show their efficiency when they are compared with the symplectic DIRK method derived by Sanz-Serna and Abia (SIAM J. Numer. Anal. 28 (1991) 1081–1096).  相似文献   

4.
Zero-rank matrix numerical differentiation algorithms are applied to construct efficient numerical-analytical methods (so-called zero-rank matrix methods) to find the eigenvalues and eigenfunctions of boundary-value problems for second-order differential equations with a delayed argument. The proposed methods are analyzed.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 58, pp. 19–24, 1986.  相似文献   

5.
Using a suitable zero-relation and the inclusion isotonicity property, new interval iterative methods for the simultaneous inclusion of simple complex zeros of a polynomial are derived. These methods produce disks in the complex plane that contain the polynomial zeros in each iteration, providing in this manner an information about upper error bounds of approximations. Starting from the basic method of the fourth order, two accelerated methods with Newton’s and Halley’s corrections, having the order of convergence five and six respectively, are constructed. This increase of the convergence rate is obtained without any additional operations, which means that the methods with corrections are very efficient. The convergence analysis of the basic method and the methods with corrections is performed under computationally verifiable initial conditions, which is of practical importance. Two numerical examples are presented to demonstrate the convergence behavior of the proposed interval methods.  相似文献   

6.
Parallel Newton two-stage iterative methods to solve nonlinear systems are studied. These algorithms are based on both the multisplitting technique and the two-stage iterative methods. Convergence properties of these methods are studied when the Jacobian matrix is either monotone or an H-matrix. Furthermore, in order to illustrate the performance of the algorithms studied, computational results about these methods on a distributed memory multiprocessor are discussed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
Order stars and stability for delay differential equations   总被引:3,自引:0,他引:3  
Summary. We consider Runge–Kutta methods applied to delay differential equations with real a and b. If the numerical solution tends to zero whenever the exact solution does, the method is called -stable. Using the theory of order stars we characterize high-order symmetric methods with this property. In particular, we prove that all Gauss methods are -stable. Furthermore, we present sufficient conditions and we give evidence that also the Radau methods are -stable. We conclude this article with some comments on the case where a andb are complex numbers. Received June 3, 1998 / Published online: July 7, 1999  相似文献   

8.
B-consistency andB-convergence of linearly implicit one step methods with respect to a class of arbitrarily stiff semi-linear problems are considered. Order conditions are derived. An algorithm for constructing methods of order>1 is shown and examples are given. By suitable modifications of the methods the occurring order reduction is decreased.  相似文献   

9.
A Cauchy problem for the Laplace equation in a rectangle is considered. Cauchy data are given for y=0, and boundary data are for x=0 and x=π. The solution for 0<y?1 is sought. We propose two different regularization methods on the ill-posed problem based on separation of variables. Both methods are applied to formulate regularized solutions which are stably convergent to the exact one with explicit error estimates.  相似文献   

10.
The Nyström and degenerate kernel methods, based on projections at Gauss points onto the space of (discontinuous) piecewise polynomials of degree ?r-1, for the approximate solution of eigenvalue problems for an integral operator with a smooth kernel, exhibit order 2r. We propose new superconvergent Nyström and degenerate kernel methods that improve this convergence order to 4r for eigenvalue approximation and to 3r for spectral subspace approximation in the case where the kernel is sufficiently smooth. Moreover for a simple eigenvalue, we show that by using an iteration technique, an eigenvector approximation of order 4r can be obtained. The methods introduced here are similar to that studied by Kulkarni in [10] and exhibit the same convergence orders, so a comparison with these methods is worked out in detail. Also, the error terms are analyzed and the obtained methods are numerically tested. Finally, these methods are extended to the case of discontinuous kernel along the diagonal and superconvergence results are also obtained.  相似文献   

11.
An extension of the global convergence framework for unconstrained derivative-free optimization methods is presented. The extension makes it possible for the framework to include optimization methods with varying cardinality of the ordered direction set. Grid-based search methods are shown to be a special case of the more general extended global convergence framework. Furthermore,the required properties of the sequence of ordered direction sets listed in the definition of grid-based methods are relaxed and simplified by removing the requirement of structural equivalence.  相似文献   

12.
In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then the singular ODE occurring in classic Levin methods is converted into two kinds of non-singular ODEs.The solutions of one can be obtained explicitly,while the other kind of ODEs can be solved efficiently by collocation methods.The proposed methods can attain arbitrarily high asymptotic orders and also enjoy superalgebraic convergence with respect to the number of collocation points.Several numerical experiments are presented to validate the efficiency of the proposed methods.  相似文献   

13.
Abstract

Carlson's multiple hypergeometric functions arise in Bayesian inference, including methods for multinomial data with missing category distinctions and for local smoothing of histograms. To use these methods one needs to calculate Carlson functions and their ratios. We discuss properties of the functions and explore computational methods for them, including closed form methods, expansion methods, Laplace approximations, and Monte Carlo methods. Examples are given to illustrate and compare methods.  相似文献   

14.
Spectral methods with interface point are presented to deal with some singularly perturbed third order boundary value problems of reaction-diffusion and convection-diffusion types. First, linear equations are considered and then non-linear equations. To solve non-linear equations, Newton’s method of quasi-linearization is applied. The problem is reduced to two systems of ordinary differential equations. And, then, each system is solved using spectral collocation methods. Our numerical experiments show that the proposed methods are produce highly accurate solutions in little computer time when compared with the other methods available in the literature.   相似文献   

15.
Rooted tree analysis is adapted from stochastic differential equations to derive systematically general Runge–Kutta methods for deterministic affinely controlled nonlinear systems. Order conditions are found and some specific coefficients for second- and third-order methods are determined, which are then used for simulations compared with the Taylor methods for affinely controlled nonlinear systems derived by Grüne and Kloeden.  相似文献   

16.
Explicit trigonometrically fitted two-derivative Runge-Kutta (TFTDRK) methods solving second-order differential equations with oscillatory solutions are constructed. When the second derivative is available, TDRK methods can attain one algebraic order higher than Runge-Kutta methods of the same number of stages. TFTDRK methods have the favorable feature that they integrate exactly first-order systems whose solutions are linear combinations of functions from the set $\{\exp ({\rm i}\omega x),\exp (-{\rm i}\omega x)\}$ or equivalently the set $\{\cos (\omega x),\sin (\omega x)\}$ with $\omega >0$ the principal frequency of the problem. Four practical TFTDRK methods are constructed. Numerical stability and phase properties of the new methods are examined. Numerical results are reported to show the robustness and competence of the new methods compared with some highly efficient methods in the recent literature.  相似文献   

17.
Several methods have been proposed to calculate a rigorous error bound of an approximate solution of a linear system by floating-point arithmetic. These methods are called ‘verification methods’. Applicable range of these methods are different. It depends mainly on the condition number and the dimension of the coefficient matrix whether such methods succeed to work or not. In general, however, the condition number is not known in advance. If the dimension or the condition number is large to some extent, then Oishi–Rump’s method, which is known as the fastest verification method for this purpose, may fail. There are more robust verification methods whose computational cost is larger than the Oishi–Rump’s one. It is not so efficient to apply such robust methods to well-conditioned problems. The aim of this paper is to choose a suitable verification method whose computational cost is minimum to succeed. First in this paper, four fast verification methods for linear systems are briefly reviewed. Next, a compromise method between Oishi–Rump’s and Ogita–Oishi’s one is developed. Then, an algorithm which automatically and efficiently chooses an appropriate verification method from five verification methods is proposed. The proposed algorithm does as much work as necessary to calculate error bounds of approximate solutions of linear systems. Finally, numerical results are presented.  相似文献   

18.
Block Jacobi and Gauss-Seidel iterative methods are studied for solvingn×n fuzzy linear systems. A new splitting method is considered as well. These methods are accompanied with some convergence theorems. Numerical examples are presented to illustrate the theory.  相似文献   

19.
Abstract

Several discontinuous Galerkin (DG) methods are introduced for solving a frictional contact problem with normal compliance, which is modeled as a quasi-variational inequality. Consistency, boundedness, and stability are established for the DG methods. Two numerical examples are presented to illustrate the performance of the DG methods.  相似文献   

20.
We analyze nonlinear stochastic optimization problems with probabilistic constraints on nonlinear inequalities with random right hand sides. We develop two numerical methods with regularization for their numerical solution. The methods are based on first order optimality conditions and successive inner approximations of the feasible set by progressive generation of p-efficient points. The algorithms yield an optimal solution for problems involving α-concave probability distributions. For arbitrary distributions, the algorithms solve the convex hull problem and provide upper and lower bounds for the optimal value and nearly optimal solutions. The methods are compared numerically to two cutting plane methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号