首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Solid State Sciences》2000,2(6):607-614
We have investigated the crystal structures of CsLnFe(CN)6·nH2O (Ln=lanthanide, n=4,5), as well as TlTmRu(CN)6·3H2O. These phases can be thought of as derivatives of LnFe(CN)6·4H2O, where, simultaneously, an alkali ion (or Tl+) is introduced while the valence of Fe is reduced from Fe3+ to Fe2+. A new arrangement of the structural units is observed in the CsLnFe(CN)6·5H2O, where the coordination of the Ln-ion is changed to a bisdisphenoid. The resulting LnN5O3 units alternate with Fe(CN)6 units to form an overall rocksalt-type ralted lattice that accommodates the alkali ions in interstitial sites. Due to the arrangement of the water molecules, a layer structure results.  相似文献   

2.
Calcium titanate (CaTiO3) was conveniently synthesized by thermal decomposition of a single-source precursor [Ca(H2O)3]2[Ti2(O2)2O(NC6H6O6)2]·2H2O at low temperature. This single-source precursor was characterized by elemental analysis, IR spectrum, thermal gravimetric analysis and X-ray single crystal diffraction. The calcined products at different temperature were further characterized by powder X-ray diffractions and IR spectra. The morphology, microstructure, and crystallinity of the resulting CaTiO3 materials have been characterized by SEM and TEM. The BET measurement revealed that the CaTiO3 powders had a surface area of 14.0 m2/g. In addition, the microwave dielectric properties of the resulting CaTiO3 material have been measured.  相似文献   

3.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

4.
Complexes [Ca(H2O)2(Dmf@CB[6])(Bdc)] · DMF · 4H2O (I) and [Ca(H2O)3(Dmf@CB[6])]Cl2 · 2H2O (II) are synthesized by the heating (95°C) of a mixture of calcium chloride and cucurbit[6]uril (CB[6]) in a mixture of dimethylformamide (DMF) and water with the addition of terephthalic acid (H2Bdc) in the case of complex I or triethylamine for complex II. The compounds are characterized by X-ray diffraction analysis, IR spectroscopy, and thermogravimetric and elemental analyses. The luminescence spectra are also recorded. According to the X-ray diffraction data, the calcium atom is coordinated by the oxygen atoms of the cucurbit[6]uril molecule, water molecules, and terephthalate anion (for I). The internal cavity of the cavitand is occupied by DMF.  相似文献   

5.
Three new B-Anderson type polyoxometalates, [(C6H5NO2)2Ln(H2O)6](CrMo6O24H6)·2C6H5NO2·6H2O (Ln?=?Sm 1, Dy 2 and Er 3), have been synthesized in aqueous solution and structurally characterized by single-crystal X-ray diffraction, IR spectra, UV spectroscopy, and fluorescence spectroscopy. Crystal structure analysis reveals that these three compounds have the same composition and are isostructural, assembled by B-Anderson type polyoxoanion [CrMo6O24H6]3?, rare-earth ions, and ligands. UV spectroscopy shows that 1 is stable when pH is 4.50–5.83. The fluorescence spectra of 2 indicate that both rare-earth ions Dy3+ and pyridine-4-carboxylic acid ligands function in the charge transition of the compound.  相似文献   

6.
From hydrothermal treatment of benzene-1,2-diamine, pyrocatechol, and MoO3 in acetic acid solution, a new compound, [Mo22-O)2(C6H4O2)2(H2O)] · (C8H9N2)2 · 2H2O (I), constructed from pyrocatechol chelated dinuclear molybdenum units and 2-methylbenzimidazole has been synthesized. Single-crystal structure analysis reveals that the compound crystallizes in the monoclinic space group P21/c with a = 23.365(2), b = 7.2214(5), c = 19.3021(16) β = 97.929(4), V = 3225.6(5), Z = 4, M = 808.46, ρc = 1.665 g/cm3, μ(MoK α) = 0.84 mm?1, F(000) = 1608, the final R = 0.0622 and wR = 0.1484 for 7385 independent reflections with R int = 0.0393. Interestingly, an in situ condensation between acetic acid and benzene-1,2-diamine has occurred, and the unexpected 2-methyl-1-H-benzo[d] imidazoles serve as counterions and N-H donors to form stable hydrogen-bond network in the crystal. Furthermore, intermolecular hydrogen bonds are found among the cations, anions and crystalline water molecules. The double nuclear molybdenum units are connected by O-H...O hydrogen bonds with the crystalline water molecules to form one-dimensional chains, and the chains are further joined together by N-H...O to form a quasi-two dimensional structure.  相似文献   

7.
The infrared, Raman and inelastic neutron scattering (INS) spectra of TSA·6H2O and TPA·6H2O are in agreement with those expected for the presence of H5O+2 ions. Force fields for different assignment schemes are compared with the observed vibrational frequencies and the INS spectral profile. All but two schemes are eliminated. Whilst low-resolution INS spectroscopy cannot distinguish between these two schemes, the orientations of the vibrational ellipsoids for one scheme are in better agreement with those reported from low-temperature crystallographic studies of the H5O+2 ion.  相似文献   

8.
(enH2)5[(VO)12O6B18O36(OH)6]·2(H3O)·6H2O的水热合成和晶体结构   总被引:1,自引:0,他引:1  
以NH4VO3,H3BO3,乙二胺,MoO3,H2O为原料,按物质的量比2∶20∶9∶3∶222,在180℃条件下晶化,得到黑色棱形晶体(enH2)5[(VO)12O6B18O36(OH)6].2(H3O).6H2O.单晶结构分析结果表明该化合物属三斜晶系,Pī空间群,晶胞参数a=1.336 8(3)nm,b=1.599 8(3)nm,c=1.663 4(3)nm,α=94.040(1)°,β=91.530(1)°,γ=95.830(1)°,V=3.528 1(12)nm3,Z=2,Dc=2.099 g/cm3,μ=1.649 mm-1,F(000)=2 228,15 641个可观察独立衍射点射点(I>2σ(I)),最后结构精修到偏离因子R1=0.047 5,wR2=0.150 4,S=1.039.该化合物的结构主要由阴离子簇[(VO)12O6B18O36(OH)6]12-构成.该阴离子簇由B18O36(OH)6十八元环夹在两个以共边交替相连形成的V6O18簇中间,通过共用氧原子形成三明治式结构新颖的硼-钒-氧离子簇,簇间填充了一些(enH2)2+离子和水分子.  相似文献   

9.
Russian Journal of General Chemistry - Cesium uranate [Cs2(Н2О)3][(UO2)6O3(OH)8]·2H2O was obtained by reacting hydrated uranium(VI) oxide UO3·2.25H2O with a cesium nitrate...  相似文献   

10.
Two Cu(II) hydroxo succinates [Cu3(H2O)2(OH)2(C4H4O4)2]?·?4H2O (1) and [Cu4(H2O)2(OH)4(C4H4O4)2]?·?5H2O (2) and one Cu(II) hydroxo glutarate [Cu5(OH)6(C5H6O4)2]?·?4H2O (3) have been prepared and structurally characterized by single crystal X-ray diffraction methods. They feature 1D and 2D copper oxygen connectivity of elongated {CuO6} octahedra in “4?+?1?+?1” and “4?+?2” coordination geometries. Within 1, linear trimers of three edge-sharing {CuO6} octahedra are connected into copper oxygen chains, which are bridged by the anti conformational succinate anions to generate 2D layers with mono terminally coordinating gauche succinate anions on both sides. The layers are assembled into a 3D framework by interlayer hydrogen bonds with lattice H2O molecules distributed in channels. Different from 1, the principal building units in 2 are linear tetramers of four edge-sharing {CuO6} octahedra. The tetramers are condensed into copper oxygen chains and the succinate anions interlink them into a 3D framework with triangular channels filled by lattice H2O molecules. The {CuO6} octahedra in 3 are edge-shared to form unprecedented 2D inorganic layers with mono terminally coordinating glutarate anions on both sides. Interlayer hydrogen bonding interactions are responsible for supramolecular assembly of the layers into a 3D framework with lattice H2O molecules in the channels. The inorganic layers in 3 can be described as hexagonal close packing of oxygen atoms with the Cu atoms in the octahedral cavities. The title compounds were further characterized by elemental analyses, IR spectra and thermal analyses.  相似文献   

11.
The crystals of the title compounds (H3O)(C3H5N2)[Mn(OH)6Mo6O18]·3.5H2O 1 and (H3O)3[Co(OH)6Mo6O18]·7H2O 2 have been prepared and structurally determined by X-ray single-crystal diffraction. Compound 1 crystallizes in monoclinic, space group C2/c with a = 21.5018(9), b = 10.9331(5), c = 11.8667(5)A,β = 95.3570(10)o, V = 2777.5(2)A3, Z = 4, Dc = 2.802 g/cm3, Mr = 1171.80,μ(MoKα) = 3.173 mm-1, F(000) = 223, the final R = 0.0458 and wR = 0.1041 for 2093 observed reflections (I>2σ(I)); Compound 2 crystallizes in monoclinic, space group P21/c with a = 11.4042(12), b = 10.9481(11), c = 11.6722(12)A, β= 99.948(2)o, V = 1435.4(3)A3, Z = 2, Dc = 2.794 g/cm3, Mr = 1207.80,μ(MoKα) = 3.223 mm-1, F(000) = 1160, the final R = 0.0544 and wR = 0.1066 for 1906 observed reflections (I > 2σ(I)). Both compounds 1 and 2 adopt the Anderson structure, in which the anion is of centrosymmetry and formed by six octahedral edge-sharing MoO6 units surrounding the central MO6 (M = Mn or Co) octahedron.  相似文献   

12.
X-ray diffraction study of tetranuclear organobismuth complexes Bi4(O)2(O2CC6H2F3-3,4,5)8 · 26-C6H6 and Bi4(O)2(O2CC6H2F3-3,4,5)8 · 2(C6H4Me2-1,4) revealed four Bi atoms connected through the bridging carboxylate ligands and the O atoms. The coordination sphere of the terminal Bi atoms includes the chelate carboxylate ligand and the 6-arene molecule. The bridging O atoms are tricoordinated, the distances between the terminal Bi atom and the center of benzene molecule (1,4-dimethylbenzene) are 3.024 Å(3.131 Å).Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 4–11.Original Russian Text Copyright © 2005 by Sharutin, Egorova, Sharutina, Ivanenko, Adonin, Starichenko, Pushilin, Gerasimenko.  相似文献   

13.
The [Ni-(H(2)O)(n)](2+)(H(2)O)(m) (n ≤ 6, m ≤ 18) complexes were studied by means of first-principles all-electron calculations performed with the BPW91 gradient corrected functional and the 6-311+G(d,p) basis sets for the H, O, and Ni atoms. Triplet states were found as low-lying states for each (n, m) combination. The estimated Ni(2+)-(H(2)O)(n) binding energies (112.8-57.4 kcal/mol for the first layer and 52.0-23.0 kcal/mol for the second one) decreases and the Ni(2+)-OH(2) bond lengths lengthen as n + m increases. With six H(2)O moieties the Ni(2+) ion furnishes its first coordination sphere of octahedral geometry. Further water addition renders the formation of the second layer. The effect of Ni(2+) on the (H(2)O)(n)···(H(2)O)(m) hydrogen bond formation for several "n" and "m" combinations was studied, revealing an enhancement of this kind of bonding, which is of key importance for the stabilization and growth of the clusters. For some n + m isomers the second layer appears before the first octahedral layer is fully formed. For example, the square planar Ni(2+)-(H(2)O)(4) core originates two-dimensional 4 + 2 and 4 + 4 isomers, where each outer water molecule accepts two H-bonds, lying 2.0 kcal/mol above the 6 and 6 + 2 ground states. The clusters were also studied by IR spectra; the OH stretching vibrational frequencies allowed us to identify the outer solvation shells by the presence of red-shifted hydrogen bond regions.  相似文献   

14.
Compounds p-HOOCC6F4COOH · H2O (H2L · H2O), [Tb2(H2O)4(L)3 · 2H2O] n (I), and Tb2(Phen)2(L)3 · 2H2O (II) are synthesized. According to the X-ray structure analysis data, the crystal structure of H2L · H2O is built of centrosymmetric molecules H2L and molecules of water of crystallization. The crystal structure of compound I is built of layers of coordination 2D polymer [Tb2(H2O)4(L)3] n and molecules of water of crystallization. The ligands are the L2? anions performing both the tetradentate bridging and pentadentate bridging-chelating functions. The coordination polyhedron TbO9 is a distorted three-capped trigonal prism. Acid H2L manifests photoluminescence in the UV region (??max = 368 nm). Compounds I and II have the green luminescence characteristic of the Tb3+ ions, and the band with ??max = 545 nm (transition 5 D 4?? 7 F 5) is maximum in intensity. The photoluminescence intensity of compound II is higher than that for compound I.  相似文献   

15.
Yan  Bing  Chen  Zhi-da  Wang  Shi-Xi 《Transition Metal Chemistry》2001,26(3):287-289
Using K3Mn(CN)6, DMF and Ln(NO3)3 · 6H2O (Ln = Tb, Dy or Er), novel cyano-bridged complexes Ln(DMF)4(H2O)2Mn(CN)6 · H2O (TbMn, DyMn and ErMn, respectively) were prepared and their magnetochemical properties were studied in detail. A weak antiferromagnetic interaction was found to exist between the rare earth ions and the manganese ion. Er(DMF)4(H2O)2Mn(CN)6 · H2O, in particular, exhibits long-range magnetic ordering, a higher critical temperature (T c = 17.5 K) and a stronger coercive force (H c = 980 Oe).  相似文献   

16.
17.
The (enH2)[GdIII 2(pdta)2(H2O)2]?·?8H2O (1) (en?=?ethylenediamine and H4pdta?=?propylenediamine-N,?N,?N′,?N′-tetraacetic acid) and (enH2)[GdIII(egta)(H2O)]2?·?6H2O (2) (H4egta?=?ethyleneglycol-bis-(2-aminoethylether)-N,?N,?N′,?N′-tetraacetic acid) complexes were synthesized and characterized by infrared spectrum, thermal analysis, and single-crystal X-ray diffraction. The complex (enH2)[GdIII 2(pdta)2(H2O)2]?·?8H2O has a binuclear eight-coordinate structure with pseudo square antiprism and crystallizes in the monoclinic crystal system with C2/c space group. Through a carboxylate bridge, an infinite 1-D zigzag polymeric binuclear [GdIII 2(pdta)2(H2O)2]2? complex anion is formed. All infinite zigzag polymeric complex anions link through hydrogen bonds, yielding a layer structure. (enH2)[GdIII(egta)(H2O)]2?·?6H2O has a mononuclear nine-coordinate structure with pseudo monocapped square antiprism and crystallizes in the monoclinic crystal system with P21/n space group. Each enH2 2+ cation, through hydrogen bonds, connects two adjacent [GdIII(egta)(H2O)]? complex anions.  相似文献   

18.
The complexes [Cd(H2O)6](C5HN2O6)2 · 2H2O (I) and [Co(H2O)6](C5HN2O6)2 · 2H2O (II) were obtained in the crystalline state by reactions of cobalt chloride and cadmium chloride with ammonium 4-nitro-2,3,5,6-tetraoxopyridinate, (NH4)2 · (C5HO6N2)2. Their cocrystallization gave the heterometallic complex [Cd0.32Co0.68(H2O)6](C5HN2O6)2 · 2H2O (III). The crystal and molecular structures of complexes I-III were determined by X-ray diffraction. It was demonstrated that the complexation reactions occur by replacement of two ammonium cations 4-nitro-2,3,5,6-tetraoxopyridinate by the complex cations [M(H2O)6]2+. The tetraoxopyridinate anions and the complex cations are hydrogen-bonded through the coordinated and crystallization water molecules as well as through the O atoms of the organic anion. The thermolysis of complexes I and II was examined by TGA.  相似文献   

19.
The two-dimensional (2D) iron trimellitate [Fe(H(2)O)(2)(C(9)O(6)H(4))].H(2)O, labeled MIL-67, has been obtained under hydrothermal conditions (473 K, 48 h). In the 2D structure of MIL-67, the Fe(2+) ions display two different octahedral environments: [FeO(4)(H(2)O)(2)] and [FeO(2)(H(2)O)(4)]. These octahedra share an apical water molecule to form infinite chains. The chains are linked by partly deprotonated C(9)O(6)H(4)(2-) anions to give hybrid organic-inorganic layers; the remaining acidic-CO(2)H group is dangling in the interlayer space. Below 8(1) K, MIL-67 displays a canted antiferromagnetic behavior, according to analyses via magnetic measurements and M?ssbauer spectroscopy. Crystal data for MIL-67 are as follows: triclinic; space group P1 (No. 2), with a = 6.9671(2) A, b = 7.3089(3) A, c = 12.5097(3) A, alpha = 78.758(1) degrees, beta = 89.542(2) degrees, and gamma = 65.197(1) degrees; volume V = 565.21(3) A(3); and Z = 2.  相似文献   

20.
Two novel zeotype crystals, K4[Cr3O(H2O)3(OOCH)6]2[P2W18O62]·9.5H2O(1) and K4 [Cr3O(H2O)3·X-ray single crystal diffraction. Crystal data: C12H43O103.5K4Cr6P2W18(1), hexagonal P6(3)/m, a=1.5895(2)nm, b=1.5895(2) nm, c=2.1620(4) nm, α=90°, β=90°, γ =120°, V=4.7305(13) nm3, Z=2,R1 =0. 0726, wR2=0. 1542; C6H57O98K4Cr3CoP2W17(2), hexagonal P6(3)/mmc, a=1. 61328 (3) nm, b=1.61328(3) nm, c=2. 06613 (9) nm, α=90°,β=90°, γ=120°, V=4. 6570(2) nm3, Z=2, R1=0. 0377,wR2 =0.1070. These crystals were characterized using elemental analysis, IR, TG-DTA, and XRD. It was found that the polyoxometalate anions maintained Wells-Dawson structure for crystal 1 and lacunary Wells-Dawson structure for crystal 2. Thermal analysis showed that crystal 1 lost the water of crystallization at 132 ℃, whereas crystal 2 lost the water of crystallization at 100 ℃. Crystal 1 could reversibly desorb and adsorb water molecules and its crystal structure could be restored after re-adsorbing the water molecules. It was also found from the XRD patterns that the void size of crystal 2 is smaller compared with that of crystal 1, which is attributed to the higher anion charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号