首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用超临界CO2注入技术制备聚合物-无机纳米粒子复合材料,以乙醇作为共溶剂,在超临界CO2中将正硅酸乙酯(TEOS)注入到聚丙烯(PP)中,重点研究共溶剂乙醇对TEOS在PP中注入率的影响.实验结果表明注入率随着共溶剂加入先增加后减小.同时研究了在共溶剂的存在下其他实验条件对注入率的影响.并采用卢瑟福背散射能谱法(RBS)分析了聚丙烯/SiO2纳米复合材料的注入元素深度分布,发现Si元素在PP中的浓度分布不均匀,随着深度的增加而减小.  相似文献   

2.
聚丙烯/累托石纳米复合材料的非等温结晶动力学研究   总被引:2,自引:0,他引:2  
在双螺杆挤出机上熔融共混制备了聚丙烯 (PP) 有机累托石 (OREC)纳米复合材料 ,采用广角X 射线衍射 (WAXD)定性地分析了PP OREC纳米复合材料及纯PP的结晶形态 ,由半峰宽定性地判断了对应晶面法向的晶粒的大小 .结果表明有机累托石没有改变聚丙烯的结晶晶型 (纳米复合材料主要还是α晶型 ) ,但是细化了晶粒的尺寸 .采用差示扫描量热法 (DSC)定量地研究了复合材料的非等温熔融结晶动力学 ,对所得数据分别用Jeziorny法的Mo法进行了处理 ,表明非等温结晶动力学参数Zc 及Avrami指数n随冷却速率的增加而增加 ,复合材料的Avrami指数n大于纯PP的n ;对相同配比的纳米复合材料 ,随着结晶度的增加 ,单位结晶时间里达到一定结晶度所需要的降温速率F(T)增大 ,对同一个设定的结晶度 ,纳米复合材料的F(T)比纯PP的小 ,说明需要的降温速率减小 .所有这些均说明有机累托石可作为聚丙烯的结晶成核剂 .  相似文献   

3.
超临界CO2协助多单体接枝改性聚丙烯   总被引:6,自引:0,他引:6  
许群  后振中  张延超  黄河 《应用化学》2007,24(4):416-419
利用超临界CO2作为溶胀剂和携带剂,使小分子单体马来酸酐和苯乙烯单体(MAH与St)及引发剂过氧化苯甲酰(BPO)插嵌进入聚丙烯(PP)基质中,然后在100℃条件下反应4 h得到接枝产物。研究了不同超临界CO2条件及引发剂浓度对接枝率的影响,固定超临界流体压力,改变温度,42℃为最佳温度,接枝率达到2.2%;固定温度,改变压力,10 MPa为最佳条件,接枝率为2.3%。对样品的FT-IR和SEM分析表明,共单体确实接枝到了PP分子链上,而DSC分析表明,随着接枝率的提高,材料的熔点(Tm)及表观结晶度(Ca)下降。这可能是接枝破坏了PP链结构的规整性,同时扩大了分子链间的距离所致。  相似文献   

4.
采用静电纺丝技术, 结合正硅酸乙酯(TEOS)的溶胶-凝胶反应制备出了直径为500 nm的SiO2短纤维(n-SF). 纤维经过硅烷偶联剂KH570表面处理后, 与聚丙烯(PP)通过螺杆混合制得复合材料. 通过SEM观察, KH570处理过的SiO2短纤维(n-MSF)在PP基体中分散均匀, 界面结合良好. DSC和XRD测试结果表明, n-SF和n-MSF的加入均可提高PP的结晶速率, 同时改变PP中β晶含量, 进而影响冲击强度; 冲击实验结果表明, n-MSF添加量为3%(质量分数)时, 复合材料冲击性能比纯PP提高了40.3%.  相似文献   

5.
PP/HDPE 共混物及其纳米复合材料超临界流体微孔发泡   总被引:1,自引:0,他引:1  
通过间歇法制备了聚丙烯(PP)/高密度聚乙烯(HDPE)共混物及其纳米复合材料的微孔塑料.用扫描电镜对发泡样品的泡孔结构进行表征,研究了纳米粒子的类型和含量对泡孔结构的影响.结果表明:在PP中加入25%的HDPE可改善泡孔结构;在 PP/HDPE 共混物中加入纳米粒子可使泡孔的直径减小、密度增加、泡孔分布更均匀;泡孔直径随着纳米粒子含量的增加会出现先减小后增加的趋势.  相似文献   

6.
累托石/聚丙烯插层纳米复合材料的制备与性能   总被引:19,自引:0,他引:19  
采用熔融共混法制备了有机改性累托石 (OREC)粘土 均聚聚丙烯 (PP)纳米复合材料 ,以X 射线衍射分析 (XRD)及透射电子显微镜分析 (TEM)观察了复合材料的相貌结构 ,研究了复合材料的力学性能及热性能 .结果表明 ,OREC在添加份数较少时可与均聚聚丙烯熔融插层形成插层型聚丙烯纳米复合材料 ,该复合材料与纯PP相比 ,具有较高的拉伸强度、断裂伸长率及冲击强度 .在有机粘土添加 2 %时 ,复合材料的拉伸强度、断裂伸长率、冲击强度最高 ,与纯PP相比 ,2 %添加量的聚丙烯纳米复合材料拉伸强度提高 6 5 7% ,断裂伸长率提高 2 89 3% ,冲击强度提高 14 1% ,10 %失重率时对应的热分解温度提高 50K .  相似文献   

7.
应用超临界CO2制备微孔聚丙烯的微孔形貌   总被引:1,自引:0,他引:1  
研究了应用超临界CO2技术制备微孔聚丙烯时发泡条件和聚丙烯(PP)的熔体强度对微孔形貌的影响。结果表明:在一定的饱和压力下,随着温度的升高,PP的变形能力改善,有利于泡孔的长大。随着饱和压力的增加,PP的熔点降低,升高压力和升高温度具有一定的等同作用。由于CO2在PP内分散的不同,高压低温时得到的泡孔比高温低压时得到的泡孔要规整。降压速率对泡孔形貌的影响因饱和压力的大小而异,饱和压力较高时随着降压速率的提高,孔密度增加,泡孔形貌经历了一个从球体到多面体转变的过程。由于PP熔体强度较低,在发泡温度和PP熔点之间非常接近时,CO2气体容易冲破孔壁而使泡孔呈开孔结构。  相似文献   

8.
由于性价比高,聚丙烯(PP)成为增长最快的通用塑料,在汽车工业、家用电器和管材方面得到了广泛地应用。然而由于聚丙烯自身的非极性限制了其在某些领域的应用,向聚丙烯主链上接枝极性单体是改善其极性的有效方法。常用的接枝改性方法有:溶液接枝、熔融接枝、等离子体处理、表面可控活性聚合以及超临界CO2状态下接枝等。其中超临界CO2由于溶解单体能力强,对聚合物基体也有很好的溶胀能力,且阻燃性好、无毒以及价格相对低廉,克服了传统接枝方法存在的操作工艺复杂,溶剂不易回收等缺点,得到了广泛研究。本文从超临界CO2协助固相接枝改性机理、接枝单体的选择、影响过程的因素以及超临界CO2协助固相接枝的应用等方面出发,系统阐述了超临界CO2协助PP固相接枝改性近些年来的研究概况。  相似文献   

9.
超临界CO2协助三单体接枝改性聚丙烯   总被引:5,自引:0,他引:5  
王鉴  冉玉霞  邹恩广  董群  王洪亮 《化学学报》2009,67(10):1141-1146
利用超临界二氧化碳(SC CO2)作为单体的溶剂和聚丙烯的溶胀剂, 通过自由基接枝聚合合成了聚丙烯与丙烯酸、甲基丙烯酸甲酯以及马来酸酐的接枝产物PP-g-(AA-MMA-MAH). 在单体的选择上采取软、硬单体复配的方式来调节链的柔韧性. 考察了溶胀条件、接枝条件以及单体配比对接枝反应的影响, 研究结果表明, PP和单体以及引发剂在7.74 MPa、47 ℃下溶胀5 h后, 75 ℃下反应3 h时接枝率为4.31%, 接枝效率可达71.83%. 产品表征说明单体均匀地接枝到聚丙烯颗粒上; 改性后聚丙烯水润湿角降低, 亲水性能得到明显改善; 接枝单体的引入提高了PP的热稳定性.  相似文献   

10.
利用纳米压痕技术对炭黑填充聚丙烯基(CB/PP)复合材料的弹性模量、硬度及蠕变行为等力学性能进行了实验研究。结果表明,炭黑颗粒对CB/PP复合材料具有强化作用,随着炭黑含量的增加,复合材料的弹性模量和硬度增加。实验得出了纯PP及CB/PP复合材料蠕变应力指数和蠕变特征松弛时间,结果表明炭黑含量的增加增大了复合材料的蠕变应力指数,并且提高了硬度和抗疲劳性能。同时炭黑含量增加,复合材料的蠕变特征松弛时间减小,表明炭黑颗粒有效阻碍了聚合物分子链的移动。  相似文献   

11.
The silica and urushiol based organic/inorganic hybrid was prepared with TEOS and urushiol by sol-gel process. GLYMO, as a silane-coupling agent, was used to obtain crack-free homogeneous films in various molar ratios, and to improve the adhesion between corona-treated BOPP substrate and the coatings. Two kinds of coating solutions were prepared; one was composed of TEOS and urushiol, the other was a mixture of TEOS, GLYMO and urushiol. Urushiol created less cracks on the film in a narrow range of molar ratios. As the amounts of urushiol were increased, the coating solutions quickly became heterogeneous. GLYMO was sufficient to prevent microcracks on the coated film and provided homogeneous coating solution. TEOS/urushiol and TEOS/GLYMO/urushiol coating solution gave insignificant effect on the permeability coefficients of oxygen, nitrogen and carbon dioxide, because the unsaturated alkyl side chain of urushiol might retard the formation of a dense structure between the inorganic silicate and the organic urushiol phase. From the antibacterial test of uncoating PP substrate and the coated film with hybrid solution, the reduction of bacteria of coating film was calculated to be 99.8%.  相似文献   

12.
This work reports preparation of organic–inorganic hybrid materials by sol–gel method. To this end, UV cured urethane acrylate and different functional monomers were used as organic network together with tetraethyl orthosilicate (TEOS) as inorganic network former and 3-methacryloxy propyltrimethoxy silane (MEMO) as network modifier. The effect of sol–gel precursor’s ratio on morphological properties of hybrid network was studied by small angle X-ray scattering (SAXS). Dynamic mechanical thermal analysis (DMTA) was performed to investigate the mechanical behavior of hybrid films. Whilst hybrids with low content of TEOS and high amounts of MEMO represented a “structural defect”, it was found that by increasing TEOS/MEMO ratio, the silica domain size decreased, showing a mass fractal behavior. This was attributed to a more compact structure of silica and a stronger hybrid network. The changes observed in compactness of hybrid films directly affected the glass transition temperature. By increasing the inorganic phase, more restriction in segmental motion of the polymeric phase occurred. Upon increasing TEOS/MEMO ratio a broader tan δ peak deduced from DMTA graphs was observed, indicating greater phase separation and higher heterogeneity.  相似文献   

13.
Polypropylene/silica microcomposites with high aspect ratio silica fillers were in situ generated into a molten polypropylene (PP) matrix. The synthesis of the inorganic domains are based on hydrolysis-condensation reactions of both alkoxysilanes precursors, the tetraethoxysilane (TEOS) and the Dynasil? 40 (composed of TEOS and partially condensed TEOS with residual ethoxy groups) respectively. The sol?Cgel reactions kinetics studied at room temperature into an acid hydroalcoholic medium for several conditions of pH associated to the processing conditions were the keys factors to control the deformability of the inorganic droplets. Thanks to a shearing hot stage coupled with an optical microscope, silica needles were obtained with a Dynasil? 40 solution treated 120?min at pH?=?3 in presence of 4?g of ethanol and then placed between two slices of PP in the stage. The deformation of the droplets were then observed once the material was molten and a shearing applied. On the contrary, no deformation was possible with TEOS precursors solutions. The results transposed to the microextruder process equipped at the die with a drawing line allowed to obtain a well pronounced elongated shape of the silica particles dispersed in the polypropylene matrix.  相似文献   

14.
The Cu/SiO2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate(TEOS) in one phase solution using ethanol as co-solvent or TEOS/H2O two phases solution,followed by the precipitation of copper on SiO2 by ammonia evaporation. In the hydrogenation of dimethyl oxalate,the catalyst prepared by one phase hydrolysis exhibited higher activity and ethylene glycol(EG) selectivity at lower temperature than that of two phases due to its larger BET surface area and multimodal pore distribution.At 488-503 K,the catalyst prepared in one phase solution with water/ethanol(W/E) volume ratio of 3:1 exhibited 90- 95%EG selectivity,while catalyst prepared by two phase hydrolysis reached 90%EG selectivity only at 498-503 K.  相似文献   

15.
A method to prepare titania-silica binary oxides is proposed in this work. In this route, inorganic precursors tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) were simultaneously or sequentially impregnated into a polypropylene (PP) matrix using supercritical carbon dioxide as a swelling agent and carrier. Hydrolysis and condensation reaction of the precursors confined in a polymer network were induced by treating the composites in 1 mol.dm(-3) (1 M) HCl. Then the PP matrix was decomposed at higher temperature, and titania-silica binary oxides were obtained. The mixed oxides were characterized by X-ray diffraction and Raman, FTIR, and X-ray photoelectron spectroscopy. It was demonstrated that the structure of the oxides depended strongly on the procedure to impregnate the precursors. The simultaneous method, in which the TEOS and TIP were simultaneously impregnated into a PP matrix, resulted in mixed oxides with highly dispersed titanium oxide species in the SiO2 matrix, while the sequential method produced the mixed oxide with separate SiO2 and TiO2 phases which were connected by Ti-O-Si bands at the interface. The method described in this work provides a new route to control the texture of TiO2-SiO2 mixed oxide simply by the impregnation sequence.  相似文献   

16.
This paper presented a novel approach to prepare PP/silica nanocomposites. First, PPw-g-KH570 (γ-methacryloxypropyl trimethoxysilane) was obtained by pre-irradiation grafting method and characterized by FTIR and TGA. Then the non-aqueous sol–gel gelation kinetics of TEOS (tetraethoxysilane)-formic acid system in xylene was researched. Subsequently PPw/silica hybrid was obtained by in situ non-aqueous sol–gel reaction of TEOS in the presence of PPw-g-KH570 solution in xylene. Finally PP/silica nanocomposites were prepared by blending of PP matrix and PPw/silica hybrid. The mechanism of in situ formed PPw/silica hybrid was proposed. The morphology of PPw/silica hybrid and microstructures of PP/silica nanocomposites were characterized by TEM and SEM. The mechanical and thermal properties of PP/silica nanocomposites were also well studied by tensile tests and DSC. It was showed that the nanosilica particles were well dispersed in PPw/silica hybrid with the aid of grafting KH570 due to co-condensation by grafted KH570 and TEOS. PPw/silica hybrid was well dispersed in PP matrix with good compatibility and strong interactions. The resulted PP/silica nanocomposites possessed better performance than that of pure PP matrix.  相似文献   

17.
Grafting copolymerization of dimethylaminoethylmethacrylate (DMAEMA) onto preirradiated polypropylene (PP) films was studied. PP samples were irradiated by electron beam in air. The effects of co-solvent system of ethanol/water (EtOH/H2O), absorbed dose, monomer concentration, reaction time, and reaction temperature on the degree of grafting were determined. The grafted sample films were investigated by Fourier transform infrared (FTIR) spectroscopy in the attenuated total reflectance mode (ATR).  相似文献   

18.
Here, we report the design of a hybrid inorganic/organic mesoporous material through simultaneous pore engineering and hydrophobic surface modification of the intramesochannels to improve the uptake of superparamagnetic maghemite nanocrystals via impregnation techniques. The mesoporous material of the SBA-15 type was functionalized in situ with thiol organo-siloxane groups. Restricting the addition of the thiol organo-siloxane to 2 mol % yielded an inorganic/organic hybrid material characterized by large pores and a well-ordered hexagonal p6mm mesophase. The hydrophobic surface modification promoted the incorporation of 7.5 nm maghemite (gamma-Fe2O3) nanocrystals, prepared through temperature-controlled decomposition of iron pentacarbonyl in organic solvents. The hydrophobic, oleic acid capped superparamagnetic maghemite nanocrystals were incorporated into the porous network via wet impregnation from organic suspensions. Combining diffraction, microscopy, and adsorption data confirmed the uptake of the nanocrystals within the intramesochannels of the silica host. Magnetization dependencies on magnetic field at different temperatures show a constriction in the loop around the origin, which indicates immobilization of maghemite nanocrystals inside the thiol-functionalized silica host.  相似文献   

19.
This work aims at studying the abrasion resistance of differently formulated organic–inorganic hybrid coatings prepared by sol–gel method. The organic phase contained UV curable urethane acrylate oligomers and monomers having different functionalities. The inorganic phase was composed of tetraethyl orthosilicate (TEOS) and 3-methacryloxy propyltrimethoxy silane (MEMO). Through a Taguchi experimental design, the impact of influencing parameters such as molar ratio of precursors, hydrolysis ratio (R), post-curing temperature, post-curing time and weight percentage of inorganic to organic part were investigated. Very high transparency of hybrid coatings indicated that nano sized inorganic phase had formed. MEMO could facilitate the connection of two phases, preventing macro phase separation. However, high levels of MEMO lead to ‘defect structure’ in silica network as well as to decreased transparency and mechanical properties. The optimum condition in which highly transparent films with great abrasion resistance occurred was observed at equimolar ratio of water to alkoxide and TEOS: MEMO ratio being unity. Statistical analysis revealed that thermal post-curing was not significantly important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号