首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
Column generation for solving linear programs with a huge number of variables alternates between solving a master problem and a pricing subproblem to add variables to the master problem as needed. The method is known to often suffer from degeneracy in the master problem. Inspired by recent advances in coping with degeneracy in the primal simplex method, we propose a row-reduced column generation method that may take advantage of degenerate solutions. The idea is to reduce the number of constraints to the number of strictly positive basic variables in the current master problem solution. The advantage of this row-reduction is a smaller working basis, and thus a faster re-optimization of the master problem. This comes at the expense of a more involved pricing subproblem, itself eventually solved by column generation, that needs to generate weighted subsets of variables that are said compatible with the row-reduction, if possible. Such a subset of variables gives rise to a strict improvement in the objective function value if the weighted combination of the reduced costs is negative. We thus state, as a by-product, a necessary and sufficient optimality condition for linear programming.  相似文献   

2.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

3.
We propose a new class of incremental primal–dual techniques for solving nonlinear programming problems with special structure. Specifically, the objective functions of the problems are sums of independent nonconvex continuously differentiable terms minimized subject to a set of nonlinear constraints for each term. The technique performs successive primal–dual increments for each decomposition term of the objective function. The primal–dual increments are calculated by performing one Newton step towards the solution of the Karush–Kuhn–Tucker optimality conditions of each subproblem associated with each objective function term. We show that the resulting incremental algorithm is q-linearly convergent under mild assumptions for the original problem.  相似文献   

4.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition, that eliminates the need for using the Benders or Dantzig-Wolfe master problems. As input to the dual subproblem the average of a part of all known dual solutions of the primal subproblem is used, and as input to the primal subproblem the average of a part of all known primal solutions of the dual subproblem. In this paper we study the lower bounds on the optimal objective function value of (linear) pure integer programming problems obtainable by the application of mean value cross decomposition, and find that this approach can be used to get lower bounds ranging from the bound obtained by the LP-relaxation to the bound obtained by the Lagrangean dual. We examplify by applying the technique to the clustering problem and give some preliminary computational results.  相似文献   

5.
马玉敏  蔡邢菊 《计算数学》2022,44(2):272-288
增广拉格朗日方法是求解带线性约束的凸优化问题的有效算法.线性化增广拉格朗日方法通过线性化增广拉格朗日函数的二次罚项并加上一个临近正则项,使得子问题容易求解,其中正则项系数的恰当选取对算法的收敛性和收敛速度至关重要.较大的系数可保证算法收敛性,但容易导致小步长.较小的系数允许迭代步长增大,但容易导致算法不收敛.本文考虑求解带线性等式或不等式约束的凸优化问题.我们利用自适应技术设计了一类不定线性化增广拉格朗日方法,即利用当前迭代点的信息自适应选取合适的正则项系数,在保证收敛性的前提下尽量使得子问题步长选择范围更大,从而提高算法收敛速度.我们从理论上证明了算法的全局收敛性,并利用数值实验说明了算法的有效性.  相似文献   

6.
We present a primal-dual row-action method for the minimization of a convex function subject to general convex constraints. Constraints are used one at a time, no changes are made in the constraint functions and their Jacobian matrix (thus, the row-action nature of the algorithm), and at each iteration a subproblem is solved consisting of minimization of the objective function subject to one or two linear equations. The algorithm generates two sequences: one of them, called primal, converges to the solution of the problem; the other one, called dual, approximates a vector of optimal KKT multipliers for the problem. We prove convergence of the primal sequence for general convex constraints. In the case of linear constraints, we prove that the primal sequence converges at least linearly and obtain as a consequence the convergence of the dual sequence.The research of the first author was partially supported by CNPq Grant No. 301280/86.  相似文献   

7.
The several published methods for mapping a dual solution estimate to a primal solution estimate in posynomial geometric programming provide no criteria for deciding how much deviation from primal feasibility, or discrepancy between the primal and dual objective function values, should be permitted before the primal solution estimate is accepted by the designer. This paper presents a new and simple dual-to-primal conversion method that uses the cost coefficients to provide a sound economic criterion for determining when to accept a primal solution estimate. The primal solution estimate generated is the exact solution to a modified primal obtained from the given primal by modifying the cost coefficients, with the exponent matrix left unchanged. The method is shown to have desirable properties when coupled with a convergent dual algorithm.  相似文献   

8.
The mean value cross decomposition method for linear programming problems is a modification of ordinary cross decomposition that eliminates the need for using the Benders or Dantzig-Wolfe master problem. It is a generalization of the Brown-Robinson method for a finite matrix game and can also be considered as a generalization of the Kornai-Liptak method. It is based on the subproblem phase in cross decomposition, where we iterate between the dual subproblem and the primal subproblem. As input to the dual subproblem we use the average of a part of all dual solutions of the primal subproblem, and as input to the primal subproblem we use the average of a part of all primal solutions of the dual subproblem. In this paper we give a new proof of convergence for this procedure. Previously convergence has only been shown for the application to a special separable case (which covers the Kornai-Liptak method), by showing equivalence to the Brown-Robinson method.  相似文献   

9.
The geometric duality theory of Heyde and Löhne (2006) defines a dual to a multiple objective linear programme (MOLP). In objective space, the primal problem can be solved by Benson’s outer approximation method (Benson 1998a,b) while the dual problem can be solved by a dual variant of Benson’s algorithm (Ehrgott et al. 2007). Duality theory then assures that it is possible to find the (weakly) nondominated set of the primal MOLP by solving its dual. In this paper, we propose an algorithm to solve the dual MOLP approximately but within specified tolerance. This approximate solution set can be used to calculate an approximation of the weakly nondominated set of the primal. We show that this set is a weakly ε-nondominated set of the original primal MOLP and provide numerical evidence that this approach can be faster than solving the primal MOLP approximately.  相似文献   

10.
When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such applications, where, contrary to the standard algorithm, the least-squares subproblem solved at each iteration of the method is rewritten as a quadratic minimization subject to linear equality constraints. This allows the exploitation of duality properties of the associated linearized problems. This paper considers a recent conjugate-gradient-like method which performs the quadratic minimization in the dual space and produces, in exact arithmetic, the same iterates as those produced by a standard conjugate-gradients method in the primal space. This dual algorithm is computationally interesting whenever the dimension of the dual space is significantly smaller than that of the primal space, yielding gains in terms of both memory usage and computational cost. The relation between this dual space solver and PSAS (Physical-space Statistical Analysis System), another well-known dual space technique used in data assimilation problems, is explained. The use of an effective preconditioning technique is proposed and refined convergence bounds derived, which results in a practical solution method. Finally, stopping rules adequate for a trust-region solver are proposed in the dual space, providing iterates that are equivalent to those obtained with a Steihaug-Toint truncated conjugate-gradient method in the primal space.  相似文献   

11.
In Wireless Mesh Networks (WMN), the optimal routing of data depends on the link capacities which are determined by link scheduling. The optimal performance of the network, therefore, can only be achieved by joint routing and scheduling optimization. Although the joint single-path routing and scheduling optimization problem has been extensively studied, its multi-path counterpart within wireless mesh networks has not yet been fully investigated. In this paper, we present an optimization architecture for joint multi-path QoS routing and the underlying wireless link scheduling in wireless mesh networks. By employing the contention matrix to represent the wireless link interference, we formulate a utility maximization problem for the joint multi-path routing and MAC scheduling and resolve it using the primal–dual method. Since the multi-path routing usually results in the non-strict concavity of the primal objective function, we first introduce the Proximal Optimization Algorithm to get around such difficulty. We then propose an algorithm to solve the routing subproblem and the scheduling subproblem via the dual decomposition. Simulations demonstrate the efficiency and correctness of our algorithm.  相似文献   

12.
Curet曾提出了一种有趣的原始一对偶技术,在优化对偶问题的同时单调减少原始不可行约束的数量,当原始可行性产生时也就产生了原问题的最优解.然而该算法需要一个初始对偶可行解来启动,目标行的选择也是灵活、不确定的.根据Curet的原始一对偶算法原理,提出了两种目标行选择准则,并通过数值试验进行比较和选择.对不存在初始对偶可行解的情形,通过适当改变目标函数的系数来构造一个对偶可行解,以求得一个原始可行解,再应用原始单纯形算法求得原问题的最优解.数值试验对这种算法的计算性能进行验证,通过与经典两阶段单纯形算法比较,结果表明,提出的算法在大部分问题上具有更高的计算效率.  相似文献   

13.
Dynamic constraint aggregation (DCA) and dual variable stabilization (DVS) are two methods that can reduce the negative impact of degeneracy when solving linear programs. The first uses a projection to reduce the primal space whereas the second acts in the dual space. In this paper, we develop a new method, called stabilized dynamic constraint aggregation (SDCA), that combines DCA and DVS for solving set partitioning problems. It allows to fight degeneracy from both primal and dual perspectives simultaneously. To assess the effectiveness of SDCA, we report computational results obtained for highly degenerate multi-depot vehicle scheduling problem instances solved by column generation. These results indicate that SDCA can reduce the average computational time of the master problem by a factor of up to 7 with respect to the best of the two combined methods. Furthermore, they show that its performance is robust with regard to increasing levels of degeneracy in test problems.  相似文献   

14.
Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we consider the formulation of subproblems in which the objective function is a generalization of the Hestenes-Powell augmented Lagrangian function. The main feature of the generalized function is that it is minimized with respect to both the primal and the dual variables simultaneously. The benefits of this approach include: (i) the ability to control the quality of the dual variables during the solution of the subproblem; (ii) the availability of improved dual estimates on early termination of the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit bounds on the dual variables. We propose two primal-dual variants of conventional primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual 1 linearly constrained Lagrangian (pd 1LCL) method. Finally, a new sequential quadratic programming (pdSQP) method is proposed that uses the primal-dual augmented Lagrangian as a merit function.  相似文献   

15.
《Optimization》2012,61(5-6):495-516
For optimization problems that are structured both with respect to the constraints and with respect to the variables, it is possible to use primal–dual solution approaches, based on decomposition principles. One can construct a primal subproblem, by fixing some variables, and a dual subproblem, by relaxing some constraints and king their Lagrange multipliers, so that both these problems are much easier to solve than the original problem. We study methods based on these subproblems, that do not include the difficult Benders or Dantzig-Wolfe master problems, namely primal–dual subgradient optimization methods, mean value cross decomposition, and several comtbinations of the different techniques. In this paper, these solution approaches are applied to the well-known uncapacitated facility location problem. Computational tests show that some combination methods yield near-optimal solutions quicker than the classical dual ascent method of Erlenkotter  相似文献   

16.
So-called optimum-degeneracy graphs describe the structure of the set of primal and dual feasible bases associated with a degenerate vertex of the feasible solution set of a linear program. The structural properties of these graphs play an important role in determining shadow prices or performing sensitivity analysis in linear programming under degeneracy. We prove that general optimum-degeneracy graphs are connected and that negative optimum-degeneracy graphs are connected under certain conditions.  相似文献   

17.
We consider the separable nonlinear and strictly convex single-commodity network flow problem (SSCNFP). We develop a computational scheme for generating a primal feasible solution from any Lagrangian dual vector; this is referred to as “early primal recovery”. It is motivated by the desire to obtain a primal feasible vector before convergence of a Lagrangian scheme; such a vector is not available from a Lagrangian dual vector unless it is optimal. The scheme is constructed such that if we apply it from a sequence of Lagrangian dual vectors that converge to an optimal one, then the resulting primal (feasible) vectors converge to the unique optimal primal flow vector. It is therefore also a convergent Lagrangian heuristic, akin to those primarily devised within the field of combinatorial optimization but with the contrasting and striking advantage that it is guaranteed to yield a primal optimal solution in the limit. Thereby we also gain access to a new stopping criterion for any Lagrangian dual algorithm for the problem, which is of interest in particular if the SSCNFP arises as a subproblem in a more complex model. We construct instances of convergent Lagrangian heuristics that are based on graph searches within the residual graph, and therefore are efficiently implementable; in particular we consider two shortest path based heuristics that are based on the optimality conditions of the original problem. Numerical experiments report on the relative efficiency and accuracy of the various schemes.  相似文献   

18.
This paper concerns general (nonconvex) nonlinear optimization when first and second derivatives of the objective and constraint functions are available. The proposed method is based on finding an approximate solution of a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penalty-barrier function that involves both primal and dual variables. Each subproblem is solved using a second-derivative Newton-type method that employs a combined trust region and line search strategy to ensure global convergence. It is shown that the trust-region step can be computed by factorizing a sequence of systems with diagonally-modified primal-dual structure, where the inertia of these systems can be determined without recourse to a special factorization method. This has the benefit that off-the-shelf linear system software can be used at all times, allowing the straightforward extension to large-scale problems. Numerical results are given for problems in the COPS test collection.Mathematics Subject Classification (2000): 49M37, 65F05, 65K05, 90C30This paper is dedicated to Roger Fletcher on the occasion of his 65th birthday  相似文献   

19.
In this paper an algorithm is developed to generate all nondominated extreme points and edges of the set of objective values of a multiple objective linear program. The approach uses simplex tableaux but avoids generating unnecessary extreme points or bases of extreme points. The procedure is based on, and improves, an algorithm Dauer and Liu developed for this problem. Essential to this approach is the work of Gal and Kruse on the neighborhood problem of determining all extreme points of a convex polytope that are adjacent to a given (degenerate) extreme point of the set. The algorithm will incorporate Gal's degeneracy graph approach to the neighborhood problem with Dauer's objective space analysis of multiple objective linear programs.  相似文献   

20.
In this paper, we propose a new Dantzig–Wolfe decomposition for degenerate linear programs with the non degenerate constraints in the master problem and the degenerate ones in the subproblem. We propose three algorithms. The first one, where some set of variables of the original problem are added to the master problem, corresponds to the Improved Primal Simplex algorithm (IPS) presented recently by Elhallaoui et al. [7]. In the second one, some extreme points of the subproblem are added as columns in the master problem. The third algorithm is a mixed implementation that adds some original variables and some extreme points of a subproblem to the master problem. Experimental results on some degenerate instances show that the proposed algorithms yield computational times that are reduced by an average factor ranging from 3.32 to 13.16 compared to the primal simplex of CPLEX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号