首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new methodology for modeling and simulation of reactive flows is reported in which a 3D formulation of the Linear Eddy Model (LEM3D) is used as a post-processing tool for an initial RANS simulation. In this hybrid approach, LEM3D complements RANS with unsteadiness and small-scale resolution in a computationally efficient manner. To demonstrate the RANS-LEM3D model, the hybrid model is applied to a lifted turbulent N2-diluted hydrogen jet flame in a vitiated co-flow of hot products from lean H2/air combustion. In the present modeling approach, mean-flow information from RANS provides model input to LEM3D, which returns the scalar statistics needed for more accurate mixing and reaction calculations. Flame lift-off heights and flame structure are investigated in detail, along with other characteristics not available from RANS alone, such as the instantaneous and detailed species profiles and small-scale mixing.  相似文献   

2.
A coupled radiation/flamelet combustion modelling technique is applied to the simulation of a bluff-body flame. Radiation heat transfer is incorporated into the laminar flamelet model for turbulent combustion through the enthalpy defect. A new method is developed for generating flamelet library with enthalpy defect. The radiation within the flame is modelled using a raytracing approach based on the discrete transfer method. The predicted results are compared with the reported experimental data. Comparison shows that the effects of radiative heat transferr on the temperature and major species are small for the flame considered. However, a significant improvement in the prediction of OH is achieved when radiation heat transfer is included. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of swirl and downstream wall confinement on an annular nonpremixed flame were investigated using direct numerical simulation (DNS). Fully three-dimensional parallel DNS was performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Three swirl numbers have been examined: 0 (without swirl), 0.4 and 0.8, while the effects of downstream wall confinement have been examined for swirl numbers 0 and 0.4. Results have been presented in terms of instantaneous and time-averaged flow quantities, which have also been analysed using energy spectra and proper orthogonal decomposition (POD). Effects of swirl on the fluid dynamic behaviour of the annular nonpremixed flame were found to be significant. The fluid dynamic behaviour of the flame is greatly affected by the interaction between the geometrical recirculation zone (GRZ) near the jet nozzle exit due to the annular configuration, the central recirculation zone (CRZ) associated with swirl, the unsteady vortical structures in the jet column due to the shear instability, and the downstream wall confinement. Depending on the degree of swirl, the GRZ near the burner mouth and the CRZ may co-exist or one zone may be overwhelmed by another. At a moderate swirl number, the co-existence leads to a flame with strong reaction attached to the burner mouth; while at a high swirl number, the CRZ dominates over the GRZ. The precessing vortex core was observed to exist in the swirling flow fields. The Nusselt number distribution of the annular impinging flames differs from that of round impinging jets. The POD analysis revealed that wall effects on the flow field are mainly associated with the higher mode numbers.  相似文献   

4.
Turbulent premixed flames exhibit different structural and propagation characteristics with increasing upstream turbulence intensity starting from thin wrinkled flames in the Corrugated Flamelet regimes to a flame with a thicker preheat zone in the Thin Reaction Zone Regime (TRZ) and finally, becoming more disorganized or broken in the Distributed or Broken Reaction Zone (D/BRZ) regimes under intense turbulence. A single comprehensive predictive model that can span all regimes does not currently exist, and in this study we explore the ability of the stand-alone one-dimensional linear-eddy mixing (LEM) model to simulate the flames in all these regimes. Past applications of this 1DLEM model have demonstrated reasonable predictions in the flamelet and TRZ regimes and here, new experiments in the TRZ regime are specifically addressed to evaluate the predictive capability of this model. Additional simulations in the D/BRZ regimes (where no data is currently available) are performed to determine if the model can be extended to the high turbulence regime. Comparison with the data in the TRZ regime shows satisfactory agreement. Analysis suggests varying levels of preheat zone broadening in all the TRZ and D/BRZ cases. While the average heat release distribution for the TRZ cases is nearly identical to the laminar unstrained baseline, changes to the species and heat release distribution are observed only at a high Karlovitz Number K a > 103. In the D/BRZ regime it is shown that the transition is related to enhanced turbulent diffusion that dominates molecular diffusion effects causing deviations from the laminar baseline.  相似文献   

5.
6.
Laser Doppler Anemometry (LDA) and Planar Laser-Induced Fluorescence (PLIF) measurements have been performed in a turbulent nonpremixed jet flame. One of the features of this configuration is a central co-axial fuel jet surrounded by a turbulent annular air flow. The whole is placed within a low-speed coflowing air stream. This three-flow system with turbulent primary air differs from flow systems used for nonpremixed jet flames reported in the literature and is very useful for obtaining information on the mixing process between fuel and primary air. Next to the characterization of the velocity field, special attention has been paid to the conditional seeding of the central fuel jet and of the annular air flow. Together with visualizations of the OH radical, an important combustion intermediate which is formed during combustion, and the NO radical, which is seeded to the central jet flow, the resulting statistics reveal the properties of small- and large-scale structures in the flame.  相似文献   

7.
A large eddy simulation of a turbulent premixed flame propagatingthrough a chamber containing a square obstruction is presented anddiscussed. The governing equations for compressible, reacting flowsare Favre filtered and turbulence closure is achieved using thedynamic Smagorinsky subgrid model. A simple flame surface densitymodel based on the flamelet concept is employed for the subgrid scalereaction rate. The simulation gives very good agreement with experimentalresults for the speed and the shape of the flame as it propagates throughthe chamber. The peak pressures, however, are underpredicted by20–30%. Reasons for this are discussed and it is concluded that amore sophisticated combustion model is required for complex flowssuch as this one, if a more accurate prediction of the pressureis to be achieved.  相似文献   

8.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

9.
10.
11.
The paper presents large eddy simulations of co-annular swirling jets into an open domain. In each of the annuli a passive scalar is introduced and its transport is computed. If the exit of the pilot jet is retracted strong coherent flow structures are generated which substantially impact on the transport and mixing of the scalars. Average and instantaneous fields are discussed to address this issue. A conditional averaging technique is devised and applied to velocity and scalars. This allows to quantify the impact of the coherent structures on the mixing process.  相似文献   

12.
Flame surface density (FSD) based reaction rate closure is an important methodology of turbulent premixed flame modelling in the context of Large Eddy Simulations (LES). The transport equation for the Favre-filtered reaction progress variable needs closure of the filtered reaction diffusion imbalance (FRDI) term (i.e. filtered value of combined reaction rate and molecular diffusion rate) and the sub-grid scalar flux (SGSF). A-priori analysis of the FRDI and SGSF terms has in the past revealed advantages and disadvantages of the specific modelling attempts. However, it is important to understand the interaction of the FRDI and SGSF closures for a successful implementation of the FSD based closure. Furthermore, it is not known a-priori if the combination of the best SGSF model with the best FRDI model results in the most suitable overall modelling strategy. In order to address this question, a variety of SGSF models is analysed in this work together with one well established and one recent FRDI closure based on a-priori analysis. It is found that the success of the combined FRDI and SGSF closures depends on subtle details like the co-variances of the FRDI and SGSF terms. It is demonstrated that the gradient hypothesis model is not very successful in representing the SGSF term. However the gradient hypothesis provides satisfactory performance in combination of a recently proposed FRDI closure, whereas unsatisfactory results are obtained when used in combination with another existing closure, which was shown to predict the FRDI term satisfactorily in several previous analyses.  相似文献   

13.
The highly turbulent flow occurring inside gas-turbine combustors requires accurate simulation of scalar mixing if CFD methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into an LES code, including assessment/testing of alternative discretisation schemes to avoid over/undershoots and excessive smoothing. Both second order accurate TVD and higher order accurate DRP schemes are assessed. The best performance is displayed by a DRP method, but this is only true on fine meshes; it produces similar (or larger) errors to a TVD scheme on coarser meshes, and the TVD approach has been retained for LES applications. The unsteady scalar mixing performance of the LES code is validated against published DNS data for a slightly heated channel flow. Excellent agreement between the current LES predictions and DNS data is obtained, for both velocity and scalar statistics. Finally, the developed methodology is applied to scalar transport in a confined co-axial jet mixing flow, for which experimental data are available. Agreement with statistically averaged fields for both velocity and scalar, is demonstrated to be very good, and a considerable improvement over the standard eddy viscosity RANS approach. Illustrations are presented of predicted time-resolved information e.g. time histories, and scalar pdf predictions. The LES results are shown, even using a simple Smagorinsky SGS model, to predict (correctly) lower values of the turbulent Prandtl number in the free shear regions of the flow, compared to higher values in the wall-affected regions. The ability to predict turbulent Prandtl number variations (rather than input these as in combustor RANS CFD models) is an important and promising feature of the LES approach for combustor flow simulation since it is known to be important in determining combustor exit temperature traverse.  相似文献   

14.
The effects of mean flame curvature on reaction progress variable gradient, $\nabla c$ , alignment with local turbulent strain rate are studied based on three-dimensional Direct Numerical Simulation (DNS) data of turbulent premixed flame kernels with different initial radii under decaying turbulence. A statistically planar flame is also considered in order to compare the results obtained from the kernels with a flame of zero mean curvature. It is found that the dilatation rate effects diminish with decreasing kernel radius due to defocusing of heat in the positively curved regions. This gives rise to a decrease in the extent of reaction progress variable gradient alignment with most extensive principal strain rate with decreasing kernel radius. The modelling implications of the statistics of the alignment of $\nabla c$ with local strain rate have been studied in terms of scalar dissipation rate transport. A new modelling methodology for the contribution of the scalar-turbulence interaction term in the transport equation for the mean scalar dissipation is suggested addressing the reduced effects of dilatation rate for flame kernels and the diminished value of turbulent straining at the small length scales at which turbulence interacts with small flame kernels. The performance of the new models is found to be satisfactory while comparing to DNS results. The existing models for the dilatation contribution and the combined chemical reaction and molecular dissipation contributions to the transport of mean scalar dissipation, which were originally proposed for statistically planar flames, are found to satisfactorily predict the corresponding quantities for turbulent flame kernels.  相似文献   

15.
16.
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier–Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet approach is tested for two flows: a premixed preheated Bunsen flame and a partially premixed diffusion flame (Sandia Flame D). In the first case, we compare the LES with a direct numerical simulation (DNS). Four non-trivial models for the chemical source term are considered for the Bunsen flame: the standard presumed beta-pdf model, and three new propositions (simpler than the beta-pdf model): the filtered flamelet model, the shift-filter model and the shift-inversion model. A priori and a posteriori tests are performed for these subgrid reaction models. In the present preheated Bunsen flame, the filtered flamelet model gives the best results in a priori tests. The LES tests for the Bunsen flame are limited to a case in which the filter width is only slightly larger than the flame thickness. According to the a posteriori tests the three models (beta-pdf, filtered flamelet and shift-inversion) show more or less the same results as the trivial model, in which subgrid reaction effects are ignored, while the shift-filter model leads to worse results. Since LES needs to resolve the large turbulent eddies, the LES filter width is bounded by a maximum. For the present Bunsen flame this means that the filter width should be of the order of the flame thickness or smaller. In this regime, the effects of subgrid reaction and subgrid flame wrinkling turn out to be quite modest. The LES-results of the second case (Sandia Flame D) are compared to experimental data. Satisfactory agreement is obtained for the main species. Comparison is made between different eddy-viscosity models for the subgrid turbulence, and the Smagorinsky eddy-viscosity is found to give worse results than eddy-viscosities that are not dominated by the mean shear. Paper presented on the Eccomas Thematic Conference Computational Combustion 2007, submitted for a special issue of Flow, Turbulence and Combustion.  相似文献   

17.
This paper proposes a combustion model based on a turbulent flame speed closure (TFC) technique for large eddy simulation (LES) of premixed flames. The model was originally developed for the RANS (Reynolds Averaged Navier Stokes equations) approach and was extended here to LES. The turbulent quantities needed for calculation of the turbulent flame speed are obtained at the sub grid level. This model was at first experienced via an test case and then applied to a typical industrial combustor with a swirl stabilized flame. The paper shows that the model is easy to apply and that the results are promising. Even typical frequencies of arising combustion instabilities can be captured. But, the use of compressible LES may also lead to unphysical pressure waves which have their origin in the numerical treatment of the boundary conditions.  相似文献   

18.
Large-eddy simulation has been performed to investigate pilot-assisted pulverized-coal combustion in a weakly turbulent air jet. An advanced pyrolysis model, the chemical percolation devolatilization (CPD) model, has been incorporated into the LES framework to predict the local, instantaneous pyrolysis kinetics of coal particles during the simulation. Prediction on volatile species generation is thus improved, which provides an important initial condition for gas-phase volatile and solid-phase char combustion. For gas-phase combustion, the partially stirred reactor (PaSR) model is employed to model the combustion of volatile species, taking into account subgrid turbulence-chemistry interactions. For heterogeneous solid-phase char combustion, both the intrinsic chemical reaction on the internal surface of a char particle and the diffusion of gaseous oxidant through the film layer around the particle have been incorporated by using a kinetic/diffusion surface reaction model. The LES results show overall good agreements with experimental data. Sensitivity analysis has been performed to better understand the impact of parameter uncertainties on the LES results.  相似文献   

19.
In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ° pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (R e d =32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10°. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号