首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The simultaneous detection of arsenic and sulfur in thioarsenicals was achieved using xenon-based collision-cell inductively coupled plasma (ICP) mass spectrometry (MS) in combination with high-performance liquid chromatography. In an attempt to minimize the 16O16O+ interference at m/z 32, both sample introduction and collision-cell experimental parameters were optimized. Low flow rates (0.25 mL/min) and a high methanol concentration (8%) in the mobile phase produced a fourfold decrease in the m/z 32 background. A plasma sampling depth change from 3 to 7 mm produced a twofold decrease in background at m/z 32, with a corresponding fourfold increase in the signal associated with a high ionization surrogate for sulfur. The quadrupole bias and the octopole bias were used as a kinetic energy discriminator between background and analyte ions, but a variety of tuning conditions produced similar (less than twofold change) detection limits for sulfur (32S). A 34-fold improvement in the 32S detection limit was achieved using xenon instead of helium as a collision gas. The optimized xenon-based collision cell ICP mass spectrometer was then used with electrospray ionization MS to provide elemental and molecular-based information for the analysis of a fortified sample of NIST freeze-dried urine. The 3σ detection limits, based on peak height for dimethylthioarsinic acid (DMTA) and trimethylarsine sulfide (TMAS), were 15 and 12 ng/g, respectively. Finally, the peak area reproducibilities (percentage relative standard deviation) of a 5-ppm fortified sample of NIST freeze dried urine for DMTA and TMAS were 7.4 and 5.4%, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg−1 to mg kg−1. However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0–1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (AsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (AsV), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean ± standard deviation μg kg−1) AsB (107 ± 4), AsIII (113 ± 7), AsV (7 ± 2), MMA (51 ± 5), DMA (64 ± 6), Roxarsone (18 ± 1), and four unidentified arsenic species (approximate concentration 1–10 μg kg−1).  相似文献   

3.
Enzymatic hydrolysis of seafood materials for isolating arsenic species (As(III), As(V), DMA and AsB) has been successfully performed by assisting the procedure with ultrasound energy (35 kHz) supplied by an ultrasound water-bath. The use of pepsin, as a proteolytic enzyme, under optimized operating conditions (pH 3.0, temperature 40 °C, enzyme to sample ratio of 0.3) led to an efficient assistance of the enzymatic process in a short period of time (from 4.0 to 30 min). The enzymatic extract was then subjected to a clean-up procedure based on ENVI-Carb™ solid phase extraction (SPE). An optimized anion exchange high performance liquid chromatography (HPLC) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) permitted the fast separation (less than 15 min) of six different arsenic species (arsenite, As(III); arsenate, As(V); dimethylarsinic acid, DMA; and arsenobetaine, AsB; as well as monomethylarsonic acid, MMA; and arsenocholine, AsC) in a single run. Relative standard deviations (n = 11) of the over-all procedure were 7% for AsB and DMA, 11% for As(III) and 9% for MMA. HPLC–ICP-MS determinations were performed using aqueous calibrations covering arsenic concentrations of 0, 5, 10, 25, 100 and 200 μg L−1 (expressed as arsenic) for As(III), As(V), MMA, DMA and AsC; and 0, 125, 250, 500, 750, 1000 and 2000 μg L−1 (expressed as arsenic) for AsB. Germanium (5 μg L−1) was used as an internal standard. Analytical recoveries from the anion exchange column varied from 96 to 105% (enzymatic digests spiked with low target concentrations), from 97 to 104% (enzymatic digests spiked with intermediate target concentrations), and from 98 to 103% (enzymatic digests spiked with high target concentrations). The developed method was successfully applied to two certified reference materials (CRMs), DORM-2 and BCR 627, which offer certified AsB and DMA contents, and also to different seafood samples (mollusks, white fish and cold water fish). Good agreement between certified and found AsB concentrations was achieved when analyzing both CRMs; and also, between certified and found DMA concentrations in BCR 627. In addition, the sum of the different arsenic species concentrations found in most of the analyzed samples was statistically similar to the assessed total arsenic concentrations after a total sample matrix decomposition treatment.  相似文献   

4.
Diphenylarsinic acid (DPAA) and phenylarsonic acid (PAA), which were degradation products of organoarsenic chemical warfare agents used as sternutatory gas, were detected in the well water at Kamisu, Ibaraki Prefecture, Japan. The standard material of DPAA was synthesized with aqueous arsenic acid and phenylhydrazine in order to determine organic arsenic compounds in well water. The DPAA showed a protonated ion at m/z 263 [M + H]+ and a loss of H2O ion at m/z 245 [M + H ? H2O]+ from protonated ion by the electrospray ionization time‐of‐flight mass spectrometry. The quantitative analysis of DPAA and PAA was performed by high‐performance liquid chromatography inductively coupled plasma mass spectrometry and the system worked well for limpid liquid samples such as well water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
CE was coupled to inductively coupled plasma MS (ICP-MS) and ESI-MS to identify and quantify the arsenic species arsenobetaine (AsB), arsenite (As(III)), arsenate (As(V)), and dimethylarsinic acid (DMA). A GC-flame ionization detector (FID)-based German standard method and ICP-MS were used for validation of the data obtained for arsenobetaine and total arsenic, respectively. LODs obtained with the CE-ESI-TOF-MS method were 1.0x10(-7) M for AsB, 5.0x10(-7) M for DMA, and 1.0x10(-6) M for As(III) and As(V). For the CE-ICP-MS method, LODs were 8.5x10(-8) M for AsB, 9.5x10(-8) M for DMA, 9.3x10(-8) M for As(III), and 6.2x10(-8) M for As(V). While CE-ICP-MS provided high sensitivity and better reproducibility for quantitative measurements, CE-ESI-MS with a TOF mass analyzer proved to be valuable for species identification. With this setup, fish samples were prepared and analyzed and the obtained data were successfully validated with the independent methods.  相似文献   

6.
This study aimed to establish complementary high performance liquid chromatography (HPLC) methods including three modes of separation: ion pairing, cation exchange, and anion exchange chromatography, with detection by inductively coupled plasma mass spectrometry (ICPMS). The ion pairing mode enabled the separation of inorganic arsenate (As(V)), monomethylarsonic acid (MMA(V)), and dimethylarsinic acid (DMA(V)). However, the ion pair mode was unable to differentiate inorganic arsenite (As(III)) from arsenobetaine (AsB); instead, cation exchange chromatography was used to isolate and quantify AsB. Anion exchange chromatography was able to speciate all of the aforementioned arsenic species. Potential inaccurate quantification problem with urine sample containing elevated concentration of AsB, which eluted immediately after As(III) in anion exchange or ion pairing mode, was overcame by introducing a post-column hydride generation (HG) derivatization step. Incorporating HG between HPLC and ICPMS improved sensitivity and specificity by differentiating AsB from hydride-forming arsenic species. This paper emphasizes the usefulness of complementary chromatographic separations in combination with HG-ICPMS to quantitatively determine concentrations of As(III), DMA(V), MMA(V), As(V), and AsB in the sub-microgram per liter range in human urine.  相似文献   

7.
The sodium adduct of disodium salts of benzene dicarboxylic acids (m/z 233), when subjected to collision‐induced dissociation (CID), undergoes a facile loss of CO2 to produce an ion of m/z 189, which retains all the three sodium atoms of the precursor. The CID spectrum of this unusual m/z 189 ion shows significant peaks at m/z 167, 63 and 85. The enigmatic m/z 167 ion, which appeared to represent a loss of a 22‐Da neutral fragment from the precursor ion is in fact a fragment produced by the interaction of the m/z 189 ion with traces of water present in the collision gas. The change of the m/z 167 peak to 168, when D2O vapor was introduced to the collision gas of a Q‐ToF instrument, proved that such an intervention of water could occur even in collision cells of tandem‐in‐space mass spectrometers. The m/z 189 ion has such high affinity for water; it forms an ion/molecule complex even during the brief residence time of ions in collision cells of triple quadrupole instruments. The complex formed in this way then eliminates elements of NaOH to produce the ion observed at m/z 167. In an ion trap, the relative intensity of the m/z 167 peak increases with longer activation time even at the lowest possible collision energy setting. Similarly, the m/z 145 ion (which represents the sodium adduct of phenelenedisodium, formed by two consecutive losses of CO2 from the m/z 233 ion of meta‐ and para‐isomers) interacts with water to produce a fragment ion at m/z 123 for the sodium adduct of phenylsodium. Other uncommon ions that originate also from water/ion interactions are observed at m/z 85 and 63 for [Na3O]+ and [Na2OH]+, respectively. Tandem mass spectrometric experiments conducted with appropriately deuterium‐labeled compounds confirmed that the proton required for the formation of the [Na2OH]+ ion originates from traces of water present in the collision gas and not from the ring protons of the aromatic moiety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Millions of diverse molecules constituting the lipidome act as important signals within cells. Of these, cardiolipin (CL) and phosphatidylethanolamine (PE) participate in apoptosis and ferroptosis, respectively. Their subcellular distribution is largely unknown. Imaging mass spectrometry is capable of deciphering the spatial distribution of multiple lipids at subcellular levels. Here we report the development of a unique 70 keV gas‐cluster ion beam that consists of (CO2)n+(n>10 000) projectiles. Coupled with direct current beam buncher‐time‐of‐flight secondary‐ion mass spectrometry, it is optimized for sensitivity towards high‐mass species (up to m/z 3000) at high spatial resolution (1 μm). In combination with immunohistochemistry, phospholipids, including PE and CL, have been assessed in subcellular compartments of mouse hippocampal neuronal cells and rat brain tissue.  相似文献   

9.
Various internal standards and analytical methods were investigated using certified reference materials to evaluate the accuracy of the quantitation of the total As in seafood. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the total arsenic. Enhancement of the total arsenic in its concentration caused by the methanol matrix was clearly observed. Selenium (mass 77) was the best internal standard, and the standard addition method combined with the use of Se as an internal standard was the best analytical method. The total arsenic was determined in bluefin tuna, yellowfin tuna, bigeye tuna, and swordfish by ICP-MS. The concentrations of total arsenic in the seafoods ranged from 0.74 to 6.87 mg/kg.Various extraction procedures were also investigated using reference materials to evaluate the extraction efficiency of the different arsenic species in seafood. Inductively coupled plasma mass spectrometry (ICP-MS) was used in conjunction with high performance liquid chromatography (HPLC) to quantitate the arsenic species in seafood. The arsenic species were extracted from tuna fish (BCR 627) with water/methanol mixtures using sonication, a microwave-assisted system, and ultrasonic processor. The major species was arsenobetaine. The total arsenic extraction efficiency ranged from 81 to 87% for water and various methanol concentrations. Chromatograms of the arsenic species extracted from the Korea Research Institute of Standards and Science (KRISS) tuna, bluefin tuna, yellowfin tuna, bigeye tuna, and swordfish were obtained by the optimum extraction methods and the species were quantified.  相似文献   

10.
Tamoxifen (TMX) is a nonsteroidal estrogen antagonist drug used for the treatment of breast cancer. It is also included in the list of banned substances of the World Anti Doping Agency (WADA) prohibited in and out of competition. In this work, the excretion of urinary metabolites of TMX after a single therapeutic dose administration in rats has been studied using ultra‐high‐performance liquid chromatography electrospray time‐of‐flight mass spectrometry (UHPLC‐TOFMS). A systematic strategy based on the search of typical biotransformations that a xenobiotic can undergo in living organisms, based on their corresponding molecular formula modification and accurate mass shifts, was applied for the identification of TMX metabolites. Prior to UHPLC‐TOFMS analyses, a solid‐phase extraction step with polymeric cartridges was applied to urine samples. Up to 38 TMX metabolites were detected. Additional collision induced dissociation (CID) MS/MS fragmentation was performed using UHPLC‐QTOFMS. Compared with recent previous studies in human urine and plasma, new metabolites have been reported for the first time in urine. Metabolites identified in rat urine include the oxygen addition, owing to different possibilities for the hydroxylation of the rings in different positions (m/z 388.2271), the incorporation of two oxygen atoms (m/z 404.2220) (including dihydroxylated derivatives or alternatives such as epoxidation plus hydroxylation or N‐oxidation and hydroxylation), epoxide formation or hydroxylation and dehydrogenation [m/z 386.2114 (+O –H2)], hydroxylation of the ring accompanied by N‐desmethylation (m/z 374.2115), combined hydroxylation and methoxylation (m/z 418.2377), desaturated TMX derivate (m/z 370.2165) and its N‐desmethylated derivate (m/z 356.2009), the two latter modifications not previously being reported in urine. These findings confirm the usefulness of the proposed approach based on UHPLC‐TOFMS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A “shotgun” tandem mass spectrometry (MS) approach involving the use of multiple lipid-class-specific precursor ion and neutral loss scan mode experiments has been employed to identify and characterize the glycerophosphatidylethanolamine (GPEtn) lipids that were present within a crude lipid extract of a normal rat retina, obtained with minimal sample handling prior to analysis. Characterization of these lipids was performed by complementary analysis of their protonated and deprotonated precursor ions, as well as their various ionic adducts (e.g., Na+, Cl-), using a triple-quadrupole mass spectrometer. Notably, the application of novel precursor ion and neutral loss scans of m/z 164 and m/z 43, respectively, for the specific identification of sodiated GPEtn precursor ions following the addition of 500 μM NaCl to the crude lipid extracts was demonstrated. The use of these novel MS/MS scans in parallel provided simplified MS/MS spectra and enhanced the detection of 1-alkenyl, 2-acyl (plasmenyl) GPEtn lipids relative to the positive ion mode neutral loss m/z 141 commonly used for GPEtn analysis. Furthermore, the novel use of a “low energy” neutral loss scan mode experiment to monitor for the exclusive loss of 36m/z (HCl) from [M+Cl]- GPEtn adducts was demonstrated to provide a more than 25-fold enhancement for the detection of GPEtn lipids in negative ion mode analysis. Subsequent “high-energy” pseudo MS3 product ion scans on the precursor ions identified from this experiment were then employed to rapidly characterize the fatty acyl chain substituents of the GPEtn lipids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Gavin E. ReidEmail:
  相似文献   

12.
For the detection of unknown organic bromine compounds, a liquid chromatography–mass spectrometry (LC-MS) method with negative-ion electrospray ionization (NI-ESI) and induced in-source fragmentation (IISF) was established. After LC separation, the molecules are fragmentized in the source, and bromide is detected via m/z 79 and m/z 81 based on the isotopic occurrence of bromine. In this way, the retention times of the unknown organobromine compounds are determined, and this can be used to extract additional structural information (number of bound bromine atoms, molecular mass and fragmentation scheme) from measurements in the commonly used but less sensitive scan mode. The analysis of known organobromine compounds shows that LC/NI-ESI-IISF mass spectrometry with detection of m/z 79 and 81 is more sensitive than the detection of daughter ions (LC/ESI/MS-MS). Therefore, we present a method not only for the detection of unknown organic bromine compounds, but also for the selective and sensitive detection and quantification of known organobromine compounds.  相似文献   

13.
The application of electrospray ionisation mass spectrometry (ESI-MS) as a direct method for detecting reactive intermediates is a technique of developing importance in the routine monitoring of solution-phase reaction pathways. Here, we utilise a novel on-line photolysis ESI-MS approach to detect the photoproducts of riboflavin in aqueous solution under mildly alkaline conditions. Riboflavin is a constituent of many food products, so its breakdown processes are of wide interest. Our on-line photolysis setup allows for solution-phase photolysis to occur within a syringe using UVA LEDs, immediately prior to being introduced into the mass spectrometer via ESI. Gas-phase photofragmentation studies via laser-interfaced mass spectrometry of deprotonated riboflavin, [RF − H], the dominant solution-phase species under the conditions of our study, are presented alongside the solution-phase photolysis. The results obtained illustrate the extent to which gas-phase photolysis methods can inform our understanding of the corresponding solution-phase photochemistry. We determine that the solution-phase photofragmentation observed for [RF − H] closely mirrors the gas-phase photochemistry, with the dominant m/z 241 condensed-phase photoproduct also being observed in gas-phase photodissociation. Further gas-phase photoproducts are observed at m/z 255, 212, and 145. The value of exploring both the gas- and solution-phase photochemistry to characterise photochemical reactions is discussed.  相似文献   

14.
Biological and clinical samples for porphyrin and porphyrinogen analyses by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) are often contaminated with poly(ethylene)glycol (PEG), which complicates the interpretation of mass spectra and characterisation of new porphyrin metabolites. Two contaminating PEG molecules (m/z 833 and m/z 835) were completely separated from uroporphyrin I (m/z 831) by travelling wave ion mobility spectrometry and characterised by tandem mass spectrometry. One of the PEG species (m/z 835) also co‐eluted with uroporphyrinogen I (m/z 837) and was unresolvable by travelling wave ion mobility spectrometry/MS, therefore contaminating the MS/MS mass spectra owing to isotope distribution. These PEG species, with the [M + H]+ ions at m/z at 833 and/or m/z 835, co‐eluted with uroporphyrin I and uroporphyrinogen I by LC‐MS/MS and could be wrongly identified as uroporphomethenes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Methamphetamine abuse continues as a major problem in the USA owing to its powerful psychological addictive properties. AZ66, 3‐[4‐(4‐cyclohexylpiperazine‐1‐yl)pentyl]‐6‐fluorobenzo[d]thiazole‐2(3H)‐one, an optimized sigma receptor ligand, is a promising therapeutic agent against methamphetamine. To study the in vivo pharmacokinetics of this novel sigma receptor ligand in rats, a sensitive ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed in rat plasma and validated. The developed method requires a small volume of plasma (100 μL) and a simple liquid–liquid extraction. The chromatographic separations were achieved in 3.3 min using an Acquity UPLC BEH Shield RP18 column. The mass spectrophotometric detection was carried out using a Waters Micromass Quattro MicroTM triple‐quadrupole system. Multiple reaction monitoring was used for the quantitation with transitions m/z 406 → m/z 181 for AZ66 and m/z 448 → m/z 285 for aripiprazole. The method was validated over a concentration range of 1–3500 ng/mL and the lower limit of quantitation was determined to be 1 ng/mL. Validation of the assay demonstrated that the developed UPLC/MS/MS method was sensitive, accurate and selective for the determination of AZ66 in rat plasma. The present method has been successfully applied to an i.v. pharmacokinetic study in Sprague–Dawley rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A combined ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP—MS) system as an element-selective detector has been used for the determination of arsenic compounds. Seven arsenic compounds were separated by cation-exchange chromatography. Subsequently, the separated arsenic compounds were directly introduced into the ICP—MS and were detected at m/z =75. Detection limits for the seven arsenic compounds ranged from 0.8 to 3.8 μg As/l. The IC–ICP–MS system was applied to the determination of arsenic compounds in the urine of dimethylarsinic acid (DMAA)-exposed rats. DMAA was the most abundant arsenic compound detected. Arsenous acid, monomethylarsonic acid and trimethylarsine oxide were also detected.  相似文献   

17.
Experiments have been carried out to study the behaviour of organoarsenicals treated with zeolites by means of speciation analysis. IC-ICP-MS was applied to identify and quantify arsenite, arsenate and the following organoarsenicals: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium bromide (TMA+), arsenobetaine (AsB) and arsenocholine (AsC). Zeolites loaded with ferrous ions did not significantly increase the retention of inorganic arsenic species compared to the native zeolites, while there was a ten-fold removal of arsenate relating to arsenite. The formation of As(V) and DMA in the leachates containing clinoptilolites and mordenites was confirmed in the presence of natural and synthetic zeolites. Arsenobetaine and arsenocholine yielded higher levels of arsenate than the methylated species.  相似文献   

18.
Summary: Dynamic mechanical analysis is combined with mass spectrometry to study nitrocellulose under oscillating strain. At a constant temperature (150–160 °C) and frequency (400–600 Hz) nitrocellulose fractures demonstrating a modulus drop and release of products with m/z: 30 and 44. At linear heating (2 °C · min−1) and a frequency of 10–50 Hz similar products are released in two steps, the second of which demonstrates a modulus drop and a temperature increase indicating ignition.

Data for an isothermal dynamic mechanical analysis–mass spectrometry experiment performed at 160 °C.  相似文献   


19.
如何筛选合理的数据库匹配结果对于基于质谱的蛋白质组学研究至关重要。但是目前,基于打分体系和反转数据库的筛选方法都无法有效的避免假阳性和假阴性匹配的存在。因此,本文提出了一种系统的搜索策略: 非同质荷比检索规则 (INMZS)。在该策略中,所有匹配结果都需要检查相关匹配质荷比的分享程度,只有那些相关质荷比均为专有匹配时,蛋白质才会被作为可信结果保留,策略还采用迭代搜索方法以提高鉴定低丰度组分的灵敏度。最终,所有的匹配结果由诱饵数据库方法进行评估以得到最终结果列表。INMZS策略在标准蛋白质混合物和大规模人肝蛋白质组数据上进行了模拟及应用,结果显示,INMZS规则和诱饵数据库评估方法的结和可以有效的保证蛋白质组学数据匹配的可信度及灵敏度,可以广泛适用于基于二维凝胶电泳及非shotgun技术的蛋白组学研究中。  相似文献   

20.
Colon M  Hidalgo M  Iglesias M 《Talanta》2011,85(4):1941-1947
The determination of arsenic by inductively coupled plasma mass spectrometry (ICP-MS) in natural waters with high sodium and chloride content has been investigated. The instrument used is equipped with an octopole collision/reaction cell to overcome spectroscopic interferences. Thus, the optimization of collision/reaction gas flow rates is required when using a pressurized cell. A mixture of 2.9 mL min−1 of H2 and 0.5 mL min−1 of He has been found to be suitable for the removal of 40Ar35Cl+ interference.The effect of the introduction of small amounts of alcohol has also been studied in this work under both vented and pressurized cell conditions. It has been observed that the presence of 4% (v/v) of ethanol or methanol results in an increase in arsenic sensitivity. Moreover, under vented cell conditions the addition of alcohol also decreases the formation of polyatomic interference. However, this decrease is not observed under pressurized cell conditions.Different elements have been studied as possible internal standards for arsenic determination in presence of high amounts of sodium. Good results have been obtained for rhodium and yttrium under both vented and pressurized cell conditions. Although the presence of alcohol in the sample matrix also affects their behaviour, rhodium and yttrium are still the most suitable elements to correct for these matrix effects.Different experimental conditions have been compared for arsenic determination in spiked, certified and natural waters with high sodium and chloride content. The best results have been obtained under pressurized cell conditions, in the presence of ethanol and using rhodium as internal standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号