首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
分子生物学取得重大成就之后.人们很自然地把生物科学从分子水平推向更深入的一个层次,即深入到量子水平来研究生物大分子及其运动规律,从而产生了量子生物学.它是量子力学与分子生物学相结合的边缘学科,其发展过程及与其他学科的关系: 最子化学→量子生物化学→ 经典生物学→分子生物学→量子生物学 生物物理→分子生物物理 量子生物学是用量子力学的理论来研究生物大分子的结构与功能,生物凝聚态的结构与功能,生物的化学反应以及各种转化(能量转化、物质转化、形态与结构的转化)的学科.由于量子力学的近似计算方法的改进和电子计算机的应…  相似文献   

2.
自从六十年代激光问世以来,激光用于化学的问题一直受到注视.因为各类激光器的激光的波长都与原子、分子中的电子和分子内核间的振动或与分子的转动有关,所以研究激光与原子、分子、凝聚态物质的相互作用,及由此而产生的能量转移和物质变化,构成了当前光物理及光化学的主要的科学内容.众所周知,激光具有极好的单色性(Δv/v≈10-9—10-15),小的光束发散角(~λ/D),可以选择极短的作用时间(10-10— 10-14s),允许在所指定的空间、时间、频谱内高度集中能量(1010—1017W·cm-2·sr-1)这是激光能应用于化学的特殊的优点.但是,与高度发展的化学及…  相似文献   

3.
陆怀南 《物理》1992,21(1):17-24
一、原子、分子和光学物理的实质 原子、分子和光学物理(简称AMO物理学)旨在阐明物理学的基本规律,认识物质的结构及物质在原子和分子水平上的演变,认识光所有的表现形式以及发明新技术新设备等.AMO物理学向其邻近学科如化学、天体物理、凝聚态物理、等离子体物理、表面科学、生物学、医学等提供了理论、实验方法及基本数据.AMO物理学还促进了国家安全系统和核聚变、定向能源、材料研究等国家项目的发展.AMO物理学的发展使激光以及光加工和激光同位素分离等先进技术成为可能,并且由此出现了新型工业如光纤通信和利用激光进行加工.这些…  相似文献   

4.
雷仕湛 《物理》1992,21(9):518-524
激光光谱技术有很高的光谱分辨率和分析灵敏度,利用它可以深入地研究生物分子反应动力学及某些生物分子的光化学反应机理,把激光生物学的研究提高到分子水平,有助于阐明生物分子的结构和功能,揭示生命现象的奥秘.本文介绍了激光皮秒光谱、荧光光谱、反射光谱、透射光谱等技术,在研究生物分子、生物细胞、各种生物过程以及诊断癌症等方面的进展及应用前景;同时也介绍了几种生物光谱仪器.  相似文献   

5.
谢中 《物理》2002,31(3):170-170
德国汉堡DESY (DeutschesElektronen -Sychro tron)研究中心的科学家们获得了一种比任何其他激光都要强得多的紫外激光 .该结果证实了“自由电子激光可以将光放大数千万倍”的预言 .由于这种紫外光所具有的特殊性质 ,它是目前一种最强大的研究工具 ,这也意味着朝超强X射线激光迈出了重要的一步 .超强X射线激光在物理、化学、生物和医学中都有着广泛的应用前景 ,这对于材料微区结构、微区化学组分与微区物性间的关系的研究 ,也是一大福音 .传统的激光是由电子在原子或分子中确定的能级间跃迁产生光发射实…  相似文献   

6.
1983年原子与分子物理学及其应用讨论会已于10月26日-30日在桂林举行.来自全国的一百多名物理学工作者汇聚一堂,评述和讨论了原子分子物理学及其应用在国际上的现状并检阅了我国近年来这方面的进展.会上报告的论文包括大会报告及分组报告,内容有原子与分子物理理论、实验原子与分子物理和激光化学等方面的专题报告共58篇. 原子分子物理学是现代物理学中历史最悠久、应用很广的学科.它的每一进展,不仅将加深人类对原子和分子性质的认识,还会促进其它科学技术领域时发展,诸如激光技术、化学、生物学、核能技术、材料科学、表面科学等. 激光的…  相似文献   

7.
生物分子马达   总被引:3,自引:0,他引:3  
舒咬根  欧阳钟灿 《物理》2007,36(10):735-741
生物分子马达处在生命与纳米两学科的交叉点上,注定会成为本世纪基础研究的主角之一。生物分子马达的研究尽管经历了150多年,但突破性进展出现在最近二十年,这既得益于单分子技术的发展,更要归功于物理学家、生物化学家、医学家及计算学家等的联合交叉研究。文章回顾了分子马达研究的历程,展示了主要成果,也提出了面临的问题。  相似文献   

8.
秦猛  曹毅 《物理学进展》2011,31(3):168-184
许多生物大分子通过机械力来调控其结构与生物功能。它们能够产生,感应,传递和响应力学信号,并且做出相应的构象变化。单分子力谱被广泛地用于表征这些生物分子在其生理环境下的构象变化,从而研究机械力对结构和功能的调控作用。我们将在这一综述中,总结不同生物大分子力谱与其结构之间的对应关系,和各种相互作用对生物大分子力学性能的贡献和调控。这些研究也使得基于原子力显微镜的单分子力谱成为一个多功能的研究工具,把传统的生物化学和生物物理拓展到单分子层面。  相似文献   

9.
《物理》1991,(3)
超快速激光光谱实验室实验室主任:余振新学术委员会主任:高兆兰地址:510275 广州,中山大学电话:446300-925 中山大学超快速激光光谱实验室属我国首批建设的国家重点实验室.1984年9月批准筹建,1988年1月通过国家验收,并正式对外开放.1.实验室的研究方向和目标 该实验室以超短激光脉冲与时间分辨光谱学及其在物理、化学和生物学中超快过程的应用研究为主攻方向,同时开展超短激光脉冲与物质相互作用过程中的各种非线性现象的研究. 利用不同光谱波段的高强度超短激光脉冲可以激励或改变原子分子及物质体系的结构和运动状态,这伴随着各种光物理、…  相似文献   

10.
近年来,结构生物学研究越来越注重生物大分子复合物的解析,因为许多重要生物学过程都离不开复合物的参与.溶液核磁共振是目前重要的结构解析方法之一.X射线小角散射(SAXS)作为一种新的结构生物学实验手段,近年来发展迅速.SAXS能提供生物大分子复合物的较低分辨率结构信息,而核磁共振能解析复合物中各个亚基的原子分辨率结构.此外,通过核磁共振还能得到亚基之间的界面、取向以及距离信息.因此近年来通过计算机模拟,整合核磁共振和SAXS不同分辨率的结构信息,可以用来搭建生物大分子复合物的结构模型.该综述重点介绍这方面的研究进展.  相似文献   

11.
脱氧核糖核酸 (DNA)和蛋白质是构成生命体最为重要的两类生物大分子 .随着科学技术的快速发展 ,越来越多的纳米技术被用来研究这些生物大分子 .文章详细介绍了近来利用纳米孔技术研究DNA的一些进展 .结合作者近期利用聚焦离子束 (FIB)制作纳米孔的工作 ,提出了利用纳米孔解离核小体的设想 .如果能够利用纳米孔将双螺旋DNA从组蛋白八聚体上剥离下来 ,并探测这一过程 ,将揭示核小体中包含的许多生物化学、物理信息 .文章对此进行了较为详细的分析 :处于电场中的核小体在电场的作用下 ,DNA分子穿越纳米孔 ,同时由于纳米孔的阻挡力 ,使组蛋白不能穿越 ,从而诱使DNA从组蛋白八聚体上分离下来 .通过准确检测DNA分子穿孔过程中引起的电流阻塞效应 ,可将DNA与组蛋白的相互作用的一些性质反映出来  相似文献   

12.
生物体中时间与空间的有序性,很可能是物理学非平衡相变中最为完美的特例。这一点首先是由I.Prigogine指出的。H.Haken认为激光的物理机制沟通了物理学与生物学。去年年底由H.Frohlich主持的“生物学中的相干激发”国际学术讨论会突出地指出了相干相互作用在生命现象中的重要意义[1]在生物学中相干合作现象的重要性显然比(首先是生物化学)至今已放了解和接受的要大得多。 由长波如无线电波、微波直至可见与紫外光都可在生物体中找到有序性的组织形式。光子统计的测量结果表明,一切生物机体细胞发射的“超弱”光子辐射至少具有部分的相干…  相似文献   

13.
早在1942年就已发现Eu(Ⅲ)的有机络合物具有能量转移性质的荧光发射,但稀土发光的研究,由于其提取分离困难及价格昂贵而一直未得到发展。1960年激光出现后,为寻求高效的液体激光工作物质,稀土发光的能量转移机理和激光活性的研究掀起了热潮。七十年代以来,稀土络合物发光逐渐应用于与生物化学研究相关的方面。Eu~(3+)离子的发光已被用作生物大分  相似文献   

14.
具有超高亮度、超短脉冲、全相干特性的X射线自由电子激光(X-ray Free Electron Lasers,XFELs)的出现为超快时间研究与超微结构探索带来新的机遇,使得获取单分子、单颗粒原子分辨率图像及电影成为可能。随着德国FLASH、意大利FERMI、美国LCLS以及日本SACLA等装置的建成与投入使用,X射线自由电子激光已经进入了快速发展的阶段,一系列物理、化学、生物、材料科学领域的前沿研究成果不断涌现。为突破实验技术、工程设备及软件算法上的技术壁垒,相关科研机构通过国际合作,拟实现纳米颗粒、细菌、细胞、病毒、团簇及生物学大分子等单颗粒的原子分辨率成像。文章将聚焦单颗粒成像的发展历史、科学意义、研究背景、研究目标、研究规划、研究现状及世界各国的布局,并展望单颗粒成像未来的发展。  相似文献   

15.
分子动力学模拟能够描述蛋白质分子在行使生物学功能过程中涉及的构象变化,已发展成为中物学研究中重要的计算工具.由于生物分子的构象分布存在崎岖的自由能面,在较为复杂的生物体系的模拟中,传统的分子动力学模拟的构象采样能力受到极大限制,模拟的时间尺度与真实的生物学过程之间仍存在差距.增强采样是解决这一问题的有效手段.本文综述了两类增强采样方法即约束型和无约束型增强采样算法的理论基础、最新进展及其在生物分子中的典型应用,同时也简要总结了组合型增强采样算法近些年的发展.  相似文献   

16.
分子动力学模拟能够描述蛋白质分子在行使生物学功能过程中涉及的构象变化,已发展成为中物学研究中重要的计算工具.由于生物分子的构象分布存在崎岖的自由能面,在较为复杂的生物体系的模拟中,传统的分子动力学模拟的构象采样能力受到极大限制,模拟的时间尺度与真实的生物学过程之间仍存在差距.增强采样是解决这一问题的有效手段.本文综述了两类增强采样方法即约束型和无约束型增强采样算法的理论基础、最新进展及其在生物分子中的典型应用,同时也简要总结了组合型增强采样算法近些年的发展.  相似文献   

17.
X射线晶体学是获得生物大分子三维空间结构最主要的方法。基于X射线自由电子激光的晶体学——串行飞秒晶体学方法的出现,以其独特的优势为结构生物学研究提供了一种全新的研究手段。文章主要介绍了串行飞秒晶体学方法在结构生物学领域的应用及所取得的成果。这些成果表明该方法是在亚纳米空间尺度和飞秒时间尺度、在接近于自然状态下进行生物大分子静态和动态结构研究的强有力手段。  相似文献   

18.
量子电子学早在五十年代初就发展起来,但当时只限于研究微波量子放大器及有关的各种磁共振现象和微波的量子过程。六十年代初随着激光器的问世,赋予量子电子学以崭新的内容,从而成为光学和电子学相互渗透的边缘学科,是现代科学技术中较为活跃的领域之一。量子电子学涉及了激光的产生与传播;激光的特性如相干性、统计性等以及激光辐射与物质的相互作用等。它的发展已对物理学、化学、生物学和医学等学科起了重大的促进作用,从而派生出若干新的学科分支如非线性光学、激光光谱学、量子光  相似文献   

19.
原子束和分子束[1]广泛地应用于研究气体中分子的速度分布,原子之间与分子之间的相互作用截面,原子与分子在固体表面的反射和衍射现象,以及与原子和分子的激发和电离有关的问题. 在光谱学中,分子束是一种借以避免碰撞和消除多普勒加宽,从而获得高分辨率的传统方法.但是由于常规光源的低强度和分子束的低密度,使分子束在光谱学中的应用受到了限制.六十年代产生了激光器,特别是后来发展了调频激光器,激光的高光谱亮度使分子束光谱学又获得了新的动力.本文就分子束及其在激光光谱学中的应用作一简短的评述. 一、分子束技术 虽然分子束技术根据…  相似文献   

20.
石型 《波谱学杂志》1996,13(6):509-518
我们将微波电子自族共振仪的吸收谐振腔为光化学反应器.在其各种流体及温度的范围内讨论其光化学效应.作者所用的模型乃是有机烷基-亚硝酸类在醇类的动力研究,许多不同的双氢氧烷基及烷氧基-烷基与一氧化氮所结合的自由基均由光分解而产生不同的电子自旋共振光谱.最有兴趣的是产生对映结构的双氢氧乙烷基与一氧化氮所结合的异构物自由基,它们的几何形态可用分子振动理论及共价键理论来解析.自标准化学键长及化学键角度,这些烷氧基-烷基与一氧化氛所结合的自由基还存在很强的氢键,这些将会在科学上,如生物化学、生物学及医学上的氧化及还原反应有相当重要的位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号