首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
合成了磁性聚乙烯醇和磁性聚甲基丙烯酸甲酯微球,并以它们为基质,用环氧氯丙烷、羰基二咪唑或溴化氰活化后,分别键合氨基乙酸、6-氨基己酸、乙二胺或己二胺为间隔臂,用1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐或羰基二咪唑为偶联试剂,分别偶联对氨基苯甲脒、L-精氨酸甲酯、胍基乙酸或胍基己酸配体,合成了17种磁性亲和吸附剂,并用于尿激酶粗品的纯化.与前文制备的8种磁性亲和吸附剂作对照,研究了基质、活化试剂、间隔臂分子、偶联试剂及配体等因素对尿激酶纯化效果的影响.这些磁性亲和吸附剂在尿激酶的纯化中取得了较好的效果,大多数磁性亲和吸附剂的活性回收率在40%~70%之间,纯化倍数为15~40,吸附容量为0.08~0.2mg/mL.  相似文献   

2.
以琼脂糖凝胶为载体, 二甲胺为配体, 制备了β-OH, γ-OH和β-SH吸附剂. 通过对水相中内毒素的动、静态吸附探索有效的吸附剂结构. 研究结果显示, 吸附剂对内毒素的清除率随配体结构的不同呈现出较大差异, 其中β-OH吸附剂的清除效果最好, 达到90.7%. 运用计算机模拟方法提出了β-OH吸附剂与内毒素作用的模型, 阐明静电力是影响吸附性能的主要因素, 同时氢键的协同和空间位阻效应也不可忽视.  相似文献   

3.
采用反相悬浮交联法制备壳聚糖微球,对微球进行羟丙基氯化及氨基化,并偶联色素配体Cibacron Blue F3GA,得到一种新型染料亲和吸附剂.以牛血清白蛋白(BSA)为目标蛋白,考察了该染料亲和吸附剂的吸附性能,发现其对BSA有较高的吸附量(95.2mg/g),吸附行为满足Langmuir吸附等温式.负载牛血清白蛋白的微球容易洗脱,洗脱率高达99%.  相似文献   

4.
魏桂林  刘学良  李京华  刘莺  商振华 《色谱》2002,20(2):108-114
 以纤维素膜为基质材料 ,制备了 3种用于去除内毒素的亲和膜 ,分别为壳聚糖亲和膜 (KFCC5 17) ,疏水阳离子亲和膜 (KFCG316 )和金属螯合物亲和膜 (KFCG40 2 )。研究了亲和膜对内毒素的吸附容量及在内毒素去除方面的应用 ,结果表明这 3种亲和膜都可以用于多种溶液中内毒素的去除。考察了离子强度、pH值以及流速对去除效果的影响 ,并分析了原因。KFCC5 17,KFCG316 ,KFCG40 2都可用于人血清白蛋白溶液中内毒素的去除 ,KFCC5 17还可用于医药制剂如氢化可的松、葛根素、盐酸丁卡因和右旋糖苷 40葡萄糖注射液中内毒素的去除。  相似文献   

5.
以尼龙66膜为基质,用环氧氯丙烷、戊二醛、二溴丙烷、羰基二咪唑试剂对用盐酸水解后的尼龙66膜进行活化,共价键合上乙二胺、己二胺等不同长度的间隔臂和组氨酸、粘多菌素B等亲和配基,配基含量达30μmol/g以上。亲和膜装入专门设计制造的膜分离器中,能有效地去除水溶液中的内毒素,去除率一般在90%以上。该膜对内毒素的亲和容量为02mg/g,表观脱附常数为304×10-8mol/L,亲和膜可用碱、脱氧胆酸钠、盐、无热原水进行洗涤再生。  相似文献   

6.
聚四氟乙烯纤维的改性及其对胆红素的吸附   总被引:2,自引:1,他引:1  
以聚四氟乙烯(PTFE)纤维为基质, 以甲基丙烯酸缩水甘油酯(GMA)为单体, 通过辐照接枝聚合制备了PTFE-g-GMA纤维, 用聚乙烯亚胺(PEI)与PTFE-g-GMA纤维进行开环反应制得新型吸附剂PTFE-g-GMA-PEI. 考察了PTFE-g-GMA-PEI吸附剂对溶液中胆红素的吸附动力学、吸附量及pH、离子强度及温度等因素对胆红素吸附的影响. 实验结果表明, 该吸附剂对胆红素有较高的吸附容量及良好的选择吸附性能, 其吸附行为遵循Langmuir吸附模式.  相似文献   

7.
纤维素亲和膜用于内毒素的去除   总被引:5,自引:0,他引:5  
报道了用于内毒素去除的3种新型纤维素亲和膜的制备及应用,并对它们的性能进行了比较。结果表明,这3种亲和膜均能有效去除盐溶液中的内毒素,去除率在90%以上。对人血清白蛋白溶液,季铵盐和壳聚糖亲和膜对内毒素的去除率较高,仍然在90%以上,金属螯合物亲和膜的去除效果不如前两种,去除率仅为83.3%。实验选择不同的亲和膜,考察了它们对内毒素的吸附容量、样品处理量以及再生效果,结果表明吸附量在 2.4×106EU/g以上,样品处理量较大,适合用于小批量医药制剂的生产过程;再生效果较好,可重复使用。  相似文献   

8.
将N,N二甲基丙烯酰胺N,N′乙撑双丙烯酰胺共聚物部分水解,在共聚物中引入适量的羧基.含羧基的聚合物与氨基酸甲酯缩合,然后使酯基皂化,将氨基酸引入聚合物.将革兰氏阳性菌细胞壁粘肽的三种类似物(-Gly,-Gly-DAla,-Gly-DAla-DAla)分别引入上述聚合物,合成了3种万古霉素系列抗菌素的亲和吸附剂(Ⅰ,Ⅱ和Ⅲ).结果表明,吸附剂Ⅱ和吸附剂Ⅲ对N去甲万古霉素的吸附量分别为0.80和0.86mmol/g;最佳吸附pH值为6左右;吸附剂Ⅰ的吸附量随着吸附液中盐浓度的增加而显著降低,而吸附液中盐浓度对吸附剂Ⅱ的吸附量影响较小.说明亲和作用在吸附剂Ⅱ的吸附中贡献较大.用0.4mol/LNa2CO3(pH9.5)/CH3CN(体积比为7/3)作为洗脱剂可完全脱附被吸附的N去甲万古霉素.  相似文献   

9.
蔗渣基重金属离子吸附剂的制备   总被引:3,自引:1,他引:2  
采用甘蔗残渣、丙烯酸(AA)、丙烯酰胺(AM)、甲基丙烯酰氧乙基三甲基氯化铵(MAETAC)为原料,通过接枝共聚反应制备出蔗渣基重金属离子吸附剂,对制备该吸附剂的影响因子如活化时间、蔗渣和单体的配比、引发剂用量、温度和时间等条件进行了分析研究,通过正交试验得到了合成吸附剂的优化工艺条件.优化条件下合成的蔗渣基吸附剂对Cu2+的吸附容量达到58.53mg/g,是蔗渣原料的12倍.  相似文献   

10.
在偶联剂7-(甲基丙烯酰氧)丙基三甲氧基硅烷的媒介作用下,在溶液聚合体系中,采用“接出”法将功能单体1一乙烯基咪唑(VI)接枝聚合于微米级硅胶微粒表面,制得了功能接枝微粒PVI—SiO2。采用红外光谱(FT—IR)、扫描电镜(SEM)及热失重分析(TGA)等方法对PVI—SiO2进行了表征;测定了接枝微粒的Zeta电位;考察研究了主要因素对接枝聚合的影响;初步探索了其对铬酸根负离子及重金属离子的吸附特性。研究结果表明:本接枝聚合体系亦呈现在固体微粒表面接枝聚合的一般规律,即已接枝到硅胶微粒表面的聚合物层,会对后续的接枝聚合产生阻隔作用;温度及引发剂用量等因素显著影响接枝度,在适宜条件下每100gPVI—SiO2接枝PVI21.63g。在较大的pH范围内,接枝微粒的Zeta电位为较大的正值,在静电相互作用下,接枝微粒对铬酸根离子会产生很强的吸附作用,吸附量可高达120mg/g;凭借配位鳌合作用,接枝微粒对重金属离子具有强的吸附能力。  相似文献   

11.
The adsorption of polyvinylimidazole (PVI) onto kaolinite from aqueous solutions has been investigated systematically as a function of parameters such as calcination temperature of kaolinite, pH, ionic strength, and temperature. According to the experimental results, the adsorption of PVI increases with pH from 8.50 to 11.50, temperature from 25 to 55 degrees C, and ionic strength from 0 to 0.1 mol L(-1). The kaolinite sample calcined at 600 degrees C has a maximum adsorption capacity. Adsorption isotherms of PVI onto kaolinite have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The physical properties of this adsorbent are consistent with the parameters obtained from the isotherm equations. Furthermore, the zeta potentials of kaolinite suspensions have been measured in aqueous solutions of different PVI concentrations and pH. From the experimental results, (i) pH strongly alters the zeta potential of kaolinite; (ii) kaolinite has an isoelectric point at about pH 2.35 in water and about pH 8.75 in 249.9 ppm PVI concentration; (iii) PVI changes the interface charge from negative to positive for kaolinite. The study of temperature effect has been quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) has shown that kaolinite can be used for adsorption of PVI from aqueous solutions.  相似文献   

12.
亲和吸附剂对细菌内毒素吸附性能的研究   总被引:3,自引:0,他引:3  
制备了以球形纤维素为载体、8种氨基酸和1种聚赖氨酸为配基的吸附剂,对质量浓度为100.0pg/mL的内毒素水溶液进行了吸附研究,绘制了吸附等温线,并初步探讨了吸附机理.结果表明,精氨酸和赖氨酸配基具有良好的吸附能力,在1.5mL100.0pg/mL内毒素溶液中吸附量分别达到182.0和160.0pg/mL;吸附等温线显示,以赖氨酸为配基的吸附剂其吸附量随溶液内毒素浓度增加而线性增加,符合Langmuir吸附方程,吸附能力强,具有一定的临床应用前景.  相似文献   

13.
The removal of Th4+ ions from aqueous solutions was investigated using single-layer graphene oxide (GO) as a sorbent which was prepared by the modified Hummers’ method through batch adsorption experiments at room temperature. Structural characterizations of the sorbent were also investigated. The influences of the pH value of solution, contact time, sorbent dose, ionic strength, the initial metal ion concentration and temperature on the adsorption of Th4+ were also investigated. These results indicated that the adsorption of Th4+ was dependent on the pH and independent on the ionic strength. The sorbent provided significant Th4+ removal (>98.7 %) at pH 3.0 and the adsorption equilibrium was achieved after only 10 min. The Langmuir adsorption isotherm fit the absorption profile very closely, and indicated that a maximum adsorption capacity of 1.77 mmol g?1 of GO (411 mg g?1) after 2 h. The thermodynamic parameters showed that this adsorption process was endothermic and spontaneous. Moreover, the desorption level of Th4+ from GO, by using 0.1 mol L?1 H2SO4 as a stripping agent, was 84.2 ± 1.2 %, and that of 0.5 mol L?1 HNO3 as a stripping agent, was 79.8 ± 3.0 %.  相似文献   

14.
Adsorption properties of a set of polymethacrylate-based cation exchangers designed for purification of monoclonal antibodies were investigated. The materials differed significantly in the density of sulphoisobutyl ligand groups. The ligand density had a pronounced effect on the static adsorption capacity of a polyclonal human immunoglobulin G. An optimal ligand density was observed at any pH and NaCl concentration tested when sharp optima were observed at low pH and ionic strength values. This was caused by effective clogging of pore mouth at high ligand densities. An anomalous effect of ionic strength was observed for the adsorbents with the high ligand density when the adsorption capacity increased with the addition of NaCl at low pH.  相似文献   

15.
A new solid-phase extraction adsorbent was prepared by employing a two-step "grafting from" approach to anchor a multidentate N-donor ligand, 5-azacytosine onto hydrothermal carbon (HTC) microspheres for highly selective separation of U(VI) from multi-ion system. Fourier-transform infrared and X-ray photoelectron spectroscopies were used to analyze the chemical structure and properties of resultant HTC-based materials. The adsorption behavior of U(VI) onto the adsorbent was investigated as functions of pH, contact time, ionic strength, temperature, and initial U(VI) concentration using batch adsorption experiments. The U(VI) adsorption was of pH dependent. The adsorption achieved equilibrium within 30min and followed a pseudo-second-order equation. The adsorption amount of U(VI) increased with raising the temperature from 283.15 to 333.15K. Remarkably, high ionic strength up to 5.0molL(-1) NaNO(3) had only slight effect on the adsorption. The maximum U(VI) adsorption capacity reached 408.36mgg(-1) at 333.15K and pH 4.5. Results from batch experiments in a simulated nuclear industrial effluent, containing 13 co-existing cations including uranyl ion, showed a high adsorption capacity and selectivity of the adsorbent for uranium (0.63mmolUg(-1), accounting for about 67% of the total adsorption amount).  相似文献   

16.
Magnetic chitosan was prepared by co-precipitation with polymeric Schiff’s base resulting from the reaction of thiourea with glutaraldehyde. This material has great potential as high-effective sorbent for Remazol Brilliant Blue R (RBBR): maximum sorption capacity reached 0.441?mmol?g?1 at pH 1.6 and at 25°C. Kinetic plots, pH dependence, isotherm data, and influences of ionic strength were reported. The data from equilibrium sorption experiments are well fitted to the Langmuir isotherm and the pseudo-second-order sorption kinetics indicates that chemisorption controls the process. The distribution coefficient was calculated at different temperatures and the thermodynamic parameters have been calculated: the sorption reaction is endothermic, spontaneous, and increases the entropy of the system. Alkaline solution (0.5?M NaOH) was used for desorbing RBBR from loaded sorbent. The sorbent exhibited good regenerability over several repeated adsorption/desorption cycles.  相似文献   

17.
In the present work, a simple synthesis approach was applied for the fabrication of CoFe2O4@SiO2-polyethyleneimine magnetic nanoparticles as an effective sorbent for ultrasonic-assisted removal of disulfine blue dye from an aqueous solution. For identification and characterization of prepared sorbent, different analysis including Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Vibrating sample magnetometer (VSM), Energy dispersive X-ray analysis (EDX) and Transmission electron microscopy (TEM) were applied. The effect of effective parameters on the removal of disulfine blue such as pH, sorbent mass, ultrasonic time and disulfine blue concentration were also assessed. The optimum values for investigated parameters were achieved to be as follows: pH of 5.0, sorbent mass of 0.015 g, ultrasonic time of 5.0 min and disulfine blue concentration of 10.0 mg L−1. Different isotherm and kinetic models were used for the evaluation of isotherm and kinetic of adsorption. Results showed that the Langmuir isotherm model was better than other isotherm models as well as the second-order equation model was selected as a kinetic model. The maximum adsorption capacity of the proposed magnetic sorbent was achieved to be 110.0 mg g−1 which shows the applicability of proposed sorbent for removal of disulfine blue dye from aqueous solution.  相似文献   

18.
In this study, humic acid-bound nanosized hydroxyapatite (HA-nHAP) was developed as a novel adsorbent, and the potential of using HA-nHAP for the adsorption of rhodamine B (RhB) from aqueous solution as functions of pH, adsorbent dosage, contact time, ionic strength, and temperature was investigated. The results indicated that the HA binding significantly increased the adsorption of RhB due to the introduction of abundant negatively charged functional groups. The adsorption capacity of HA-nHAP for RhB was found to be pH-dependent, and the optimal pH value was found to be 6.0. The adsorption equilibrium data obeyed Sips and Freundlich isotherms and the kinetic data were well described by the Elovich kinetic model. According to the Sips equation, the maximum adsorption capacity for RhB was 24.12 mg/g. The temperature and ionic strength experiment showed that they both had an effect on the adsorption capacity of HA-nHAP. Thermodynamic study confirmed that the adsorption was a spontaneous, endothermic, and more random arrangement process. The present investigation showed that HA-nHAP is a promising adsorbent for the removal of RhB from aqueous solution.  相似文献   

19.
In this study, the effects of some factors on the adsorption of a basic dye (methylene blue) on bentonite and sepiolite samples were studied. These factors are cation (Na(+) and Ca(2+)) saturation of the samples and pH and ionic strength of the dye solution. The adsorption data were found to conform to the Langmuir equation within the concentration range studied and Langmuir constants were determined for each of the samples. The adsorption capacities of the samples were found to increase with cation saturation. Changes in the pH of the dye solution had no significant influence on the adsorption capacity and adsorption capacities were found to decrease with increasing ionic strength. The maximum sorption capacity of methylene blue exceeded the cation exchange capacity of bentonite and sepiolite.  相似文献   

20.
Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid-base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号