首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Three new compounds bearing furyl, aryl, or thienyl moieties linked to an imidazo-crown ether system (1, 2, and 3) were synthesized and fully characterized by elemental analysis, infrared, UV-vis absorption, and emission spectroscopy, X-ray crystal diffraction, and MALDI-TOF-MS spectrometry. The interaction toward metal ions (Ca(2+), Cu(2+), Ni(2+), and Hg(2+)) and F(-) has been explored in solution by absorption and fluorescence spectroscopy. Mononuclear and binuclear metal complexes using Cu(2+) or Hg(2+) as metal centers have been synthesized and characterized. Compounds 2 and 3 show a noticeable enhancement of the fluorescence intensity in the presence of Ca(2+) and Cu(2+) ions. Moreover compound 3 presents a dual sensory detection way by modification of the fluorimetric and colorimetric properties in the presence of Cu(2+) or Hg(2+). EPR studies in frozen solution and in microcrystalline state of the dinuclear Cu(II)3 complex revealed the presence of an unique Cu(2+) type.  相似文献   

2.
Amide linked lower rim 1,3-dibenzimidazole derivative of calix[4]arene, L has been shown to be sensitive and selective to Hg(2+) in aqueous acetonitrile solution based on fluorescence spectroscopy, and the stoichiometry of the complexed species has been found to be 1:1. The selectivity of L toward Hg(2+) has been shown among 11 M(2+) ions, viz., Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ca(2+), and Mg(2+) studied, including those of the mercury group and none of these ions impede the recognition of Hg(2+) by L. Role of the solvent on the recognition of Hg(2+) has been demonstrated. The role of calix[4]arene platform and the benzimidazole moieties in the recognition of Hg(2+) by L has been delineated upon performing such studies with five different molecules of relevance as reference molecular systems. The binding cores formed by the receptor L and the reference compounds have been established based on the single crystal XRD structures, and the preferential metal ion binding cores have been discussed. The binding of Hg(2+) with L has been further established based on (1)H and (13)C NMR, ESI MS, absorption, and fluorescence lifetime measurements. Some of these techniques have been used to establish the stoichiometry of the species formed. The complex species formed between L and Hg(2+) have been isolated and characterized and found to be 1:1 species even in the isolated complex. Whereas transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) provided the nanostructural behavior of L, the TEM and SEM demonstrated that the mercury complex has different characteristics when compared to L. The TEM, SEM, and powder XRD studies revealed that whereas L is crystalline, that of the mercury complex is not, perhaps a reason for not being able to obtain single crystals of the complex. Binding characteristics of Hg(2+) toward L have been established based on the DFT computational calculations.  相似文献   

3.
A [3]rotaxane 2 within 1(2) consisting of an anionic phenylene ethynylene dumbbell 2(4-) threaded through two cationic cyclophanes 1(2+) has been prepared using aqueous Glaser coupling. Stern-Volmer analysis of the fluorescence quenching using three different electron-acceptors (methyl viologen 13(2+), dipropyl-4,4'-bipyridinium disulfonate 14 and anthraquinone-2,6-disulfonate 15(2-)) shows that the threaded cyclophanes inhibit electron-transfer from the excited state of the dumbbell by steric shielding, and by electrostatic shielding in the case of methyl viologen.  相似文献   

4.
A new iminocoumarin based receptor L (C(27)H(26)N(4)OS) is synthesized with pyridyl and benzothiazolyl functionality. Synthesis of L is easy and it is isolated in good yield. L shows a selective and distinct color change from yellow to orange with Cu(2+) over Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), and Ag(+) whereas a slight change in color is also observed in the case of Hg(2+) but L shows selective fluorescent quenching only in the presence of Cu(2+) in aqueous HEPES buffer (pH 7.0). The naked eye detection limit of Cu(2+) is determined at 2 μM whereas an emission experiment shows a lower detection limit at 200 nM. Selectivity studies of L in presence of 50 equivalents of other ion(s) by emission experiment show no interference toward the detection of 1 equivalent of Cu(2+). Both UV-Vis and fluorescence studies in the presence of Cu(2+)-salts of different counter anions with various sizes and shapes (Cl(-), ClO(4)(-), NO(3)(-), CF(3)SO(3)(-), SO(4)(2-) and BF(4)(-)) show almost similar spectral output in buffer media irrespective of the nature of the counter anions. The detailed UV-Vis and fluorescence titration experiments suggest the existence of both 1:1 and 2:1 (L:Cu(2+)) complexation stoichiometry and EPR study shows d(x(2)-y(2)) ground state of the Cu(II) centre in the complex. Furthermore the formation of a mononuclear [Cu(L)(CH(3)CN)].2ClO(4) complex and the flexible conformation of L in the solid state are confirmed by the single-crystal X-ray structural study.  相似文献   

5.
Zhang JR  Huang WT  Xie WY  Wen T  Luo HQ  Li NB 《The Analyst》2012,137(14):3300-3305
Coupling T base with Hg(2+) to form stable T-Hg(2+)-T complexes represents a new direction in detection of Hg(2+). Here a graphene oxide (GO)-based fluorescence Hg(2+) analysis using DNA duplexes of poly(dT) that allows rapid, sensitive, and selective detection is first reported. The Hg(2+)-induced T(15)-(Hg(2+))(n)-T(15) duplexes make T(15) unable to hybridize with its complementary A(15) labelled with 6'-carboxyfluorescein (FAM-A(15)), which has low fluorescence in the presence of GO. On the contrary, when T(15) hybridizes with FAM-A(15) to form double-stranded DNA because of the absence of Hg(2+), the fluorescence largely remains in the presence of GO. A linear range from 10 nM to 2.0 μM (R(2) = 0.9963) and a detection limit of 0.5 nM for Hg(2+) were obtained under optimal experimental conditions. Other metal ions, such as Al(3+), Ag(+), Ca(2+), Ba(2+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Pb(2+), Ni(2+), Cu(2+), Cd(2+), Cr(3+), Fe(2+), and Fe(3+), had no significant effect on Hg(2+) detection. Moreover, the sensing system was used for the determination of Hg(2+) in river water samples with satisfactory results.  相似文献   

6.
Tetracationic water-soluble porphyrin (H(2)P(4+)) has been immobilized by pi-pi stacking interactions onto the skeleton of carbon nanohorns (CNH), without disrupting their pi-electronic network. The stable aqueous solution of the CNH-H(2)P(4+) nanoensemble was examined by both electron microscopy and spectroscopic techniques. The efficient fluorescence quenching of the H(2)P(4+) moiety in the CNH-H(2)P(4+) nanoensemble was probed by steady-state as well as time-resolved fluorescence emission spectroscopy, suggesting charge separation from the photoexcited H(2)P(4+) to CNH. In the presence of methyl viologen dication (MV(2+)) and a hole trap, accumulation of the reduced species of methyl viologen was observed by the photoillumination of CNH-H(2)P(4+), suggesting that the electron migration from the initially formed charge-separated state takes place. Transient absorption spectroscopy gave further insights on the transient species such as the charge-separated state (CNH(*-))-(H(2)P(4+))(*+), which was consumed in the presence of MV(2+) and hole shifter, leaving the reduced methyl viologen.  相似文献   

7.
The structurally characterized lower rim 1,3-di{4-antipyrine}amide conjugate of calix[4]arene (L) exhibits high selectivity toward Hg(2+) among other biologically important metal ions, viz., Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+) as studied by fluorescence, absorption, and ESI MS. L acts as a sensor for Hg(2+) by switch-off fluorescence and exhibits a lowest detectable concentration of 1.87 ± 0.1 ppm. The complex formed between L and Hg(2+) is found to be 1:1 on the basis of absorption and fluorescence titrations and was confirmed by ESI MS. The coordination features of the mercury complex of L were derived on the basis of DFT computations and found that the Hg(2+) is bound through an N(2)O(2) extending from both the arms to result in a distorted octahedral geometry with two vacant sites. The nanostructural features such as shape and size obtained using AFM and TEM distinguishes L from its Hg(2+) complex and were different from those of the simple mercuric perchlorate. L is also suited to sense pyrimidine bases by fluorescence quenching with a minimum detection limit of 1.15 ± 0.1 ppm in the case of cytosine. The nature of interaction of pyrimidine bases with L has been further studied by DFT computational calculations and found to have interactions through a hydrogen bonding and NH-π interaction between the host and the guest.  相似文献   

8.
Rodlike tobacco mosaic virus (TMV) has been found to assemble into a 2D superlattice in aqueous solution with hexagonally packed structures in the presence of Ba(2+) through like-charge attraction whereas lower-Z divalent ions such as Zn(2+), Cd(2+), Mg(2+), and Ca(2+) induce only liquidlike ordering. The molar ratio between Ba(2+) and TMV is a crucial parameter in the formation of the superlattice. There is a critical molar ratio of Ba(2+) to TMV at which TMV exhibits a transition from a nonordered colloidal state to an ordered crystalline state. It is also found that the superlattice is formed regardless of the pH and TMV concentration within the range studied.  相似文献   

9.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

10.
Joseph R  Chinta JP  Rao CP 《Inorganic chemistry》2011,50(15):7050-7058
A calix[4]arene conjugate bearing salicylyl imine having dibenzyl moiety (L) has been synthesized and characterized, and its ability to recognize three most important essential elements of human system, viz., iron, copper, and zinc, has been addressed by colorimetry and fluorescence techniques. L acts as a sensor for Cu(2+) and Fe(2+) by exhibiting visual color change and for Zn(2+) based on fluorescence spectroscopy. L shows a minimum detection limit of 3.96 ± 0.42 and 4.51 ± 0.53 ppm and 45 ± 4 ppb, respectively, toward Fe(2+), Cu(2+), and Zn(2+). The in situ prepared [ZnL] exhibits phosphate sensing among 14 anions studied with a detection limit of 247 ± 25 ppb. The complexes of Zn(2+), Cu(2+), and Fe(2+) of L have been synthesized and characterized by different techniques. The crystalline nature of the zinc and copper complexes and the noncrystalline nature of simple L and its iron complex have been demonstrated by powder XRD. The structures of Cu(2+) and Zn(2+) complexes have been established by single crystal XRD wherein these were found to be 1:1 monomeric and 2:2 dimeric, respectively, using N(2)O(2) as binding core. The geometries exhibited by the Zn(2+) and the Cu(2+) complexes were found to be distorted tetrahedral and distorted square planar, respectively. The iron complex of L exists in 1:1 stoichiometry as evident from the mass spectrometry and elemental analysis.  相似文献   

11.
The structures of core-links Al(13) (C-Al(13)) and flat-Al(13) (F-Al(13)) complexes in aqueous solution have been investigated using density functional theory (DFT) at the level of B3LYP/6-31G(d). The present work focuses on the following three aspects: (1) C-Al(13)(9+) was optimized with the consideration of solvent effect and the (27)Al NMR chemical shifts using Hartree Fock GIAO and B3LYP GIAO methods were computed respectively; (2) the optimization of F-Al(13)(15+) was also performed and the (27)Al NMR chemical shifts were obtained using the same methods as above; (3) the structural parameters of a series of typical aluminum species (Al(3+), AlOH(2+), AlF(2+), Al(2)(4+), Al(6)(6+), K-Al(13)(7+), C-Al(13)(9+) and F-Al(13)(15+)) were compared.  相似文献   

12.
Some novel imidazole derivatives were developed as highly sensitive chemisensors for transition metal ions. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg(2+), Pb(2+), Cu(2+), Zn(2+), Co(2+) and Fe(2+) and this was suggested to result from the suppression of radiationless transitions from the n-π* state in the chemisensors. By DFT calculation HOMO-LUMO energies were calculated, the electric dipole moment (μ) and the hyperpolarizability (β) of the investigated molecules have been studied experimentally and also theoretically. These synthesized molecules were found to have microscopic non-linear optical (NLO) behaviour with non-zero tensor components.  相似文献   

13.
Chen H  Ren J 《The Analyst》2012,137(8):1899-1903
A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.  相似文献   

14.
Europium and Terbium were found to form ternary complexes with ethylenediammine tetraacetic acid (EDTA) and ortho-phenanthroline (o-phen) in aqueous solution in the pH range of 6-8. These ternary complexes were found to have 1:1:1 composition and showed strong fluorescence properties. The method is made use of for the determination of these lanthanide ions in presence of excess amounts of other lanthanide ions. The lowest detection limit was calculated as 30 and 65 ng/ml of Tb(3+) and Eu(3+), respectively.  相似文献   

15.
A new monostyryl boron dipyrromethene derivative (MS1) appended with two triazole units indicates the presence of Hg(2+) among other metal ions with high selectivity by color change and red emission. Upon Hg(2+) binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg(2+); the metal ions Ag(+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Fe(3+), K(+), Mg(2+), Mn(2+), Ni(2+), Pb(2+), and Zn(2+) cause only minor changes in the fluorescence of the system. The apparent association constant (K(a)) of Hg(2+) binding in MS1 is found to be 1.864 × 10(5) M(-1). In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg(2+) in living cells.  相似文献   

16.
A weakly fluorescent thiosemicabazone (L(1)H) was found to be a selective optical and "turn-on" fluorescent chemodosimeter for Cu(2+) ion in aqueous medium. A significant fluorescence enhancement along with change in color was only observed for Cu(2+) ion; among the other tested metal ions (viz. Na(+), K(+), Mg(2+), Ca(2+), Cr(3+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ag(+), Ni(2+), Co(2+), Fe(3+) and Mn(2+)). The Cu(2+) selectivity resulted from an oxidative cyclization of the weak fluorescent L(1)H into highly fluorescent rigid 4,5-dihydro-5,5-dimethyl-4-(naphthalen-5-yl)-1,2,4-triazole-3-thione (L(2)). The signaling mechanism has been confirmed by independent synthesis with detail characterization of L(2).  相似文献   

17.
Kaur P  Sareen D  Singh K 《Talanta》2011,83(5):1695-1700
Although the high sensitivity, high selectivity and fast response make emission (fluorescence) based technique as one of the most promising tool for developing the chemosensors for metal ions, the past few years have witnessed a demand for the absorption based chemosensors for paramagnetic heavy metal ions, especially Cu(2+). Being paramagnetic, Cu(2+) leads to the low signal outputs ("turn-off") caused by decreased emission which may sometimes give false positive response, rendering the emission based technique less reliable for analytical purposes. Herein, we report synthesis and characterization of a hetarylazo derivative, characterized by a strong charge-transfer band which gets attenuated convincingly in the presence of Cu(2+) leading to distinct naked-eye color change (yellow to purple), and to a lesser extent in the presence of Cd(2+), Zn(2+), Co(2+), Pb(2+), Fe(2+), Ni(2+), Fe(3+) and Hg(2+) for which the naked eye sensitivity was comparatively (w.r.t. Cu(2+)) much less. No response was observed for the other metal ions including Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ba(2+), Mn(2+), Ag(+), Zn(2+), Cd(2+), Pb(2+), and lanthanides Ce(3+), La(3+), Pr(3+), Eu(3+), Nd(3+), Lu(3+), Yb(3+), Tb(3+), Sm(3+), Gd(3+). The proposed sensing mechanism has been ascribed to the stabilization of LUMO after complexation with Cu(2+) and a 1:1 stoichiometry has been deduced.  相似文献   

18.
A newly synthesized bis-1,8-naphthalimide aimed to increase its fluorescence intensity in the presence of protons or metal cations has been investigated. Its spectral photophysical characteristics in acetonitrile and chloroform solutions are described. The influence of metal cations (Zn(2+), Ni(2+), Ce(3+), Co(2+), Cu(2+) and Ag(+)) and protons on the fluorescence intensity has been investigate with regard to obtain fluorescence sensors for this ions in the environment.  相似文献   

19.
A new symmetric polioxo ethylene chain fluorescent probe containing 2-aminoanthracene bichromophoric as the terminal group for the alkaline earth metal cation, 2,2'-[oxybis(3-oxapentamethyleneoxy)]-bis[N-(2-anthryl)benzamide)] (1), has been synthesized. The photophysical properties of 1 have been studied by means of absorption, fluorescence spectroscopy, and (1)H NMR. The difference in emission spectra response to concentration of model compound 2-acetamido-anthracene and 1 in acetonitrile implies that intermolecular excited dimers is likely to occur. Fluorescence decay profiles of 2-acetamido-anthracene can be described by a biexponential fit, while three lifetimes, two of which are similar as those of 2-acetamido-anthracene, are found for 1. The third lifetime might be attributed to intramolecular excited dimers. Complex formation with alkaline earth metal ions are investigated in acetonitrile as solvent via fluorimetric titrations. Fluorescence intensity trend of the complex with Mg(2+) differed from those of other alkaline earth metal ions. The compound forms 1:2 (ligand/Mg(2+)) complex with Mg(2+) while formed 1:1 complexes with Ca(2+), Sr(2+), and Ba(2+), producing large hypochromic shifts in the emission spectra and significant cation-induced fluorescence amplifications. On the contrary, the addition of Ca(2+), Sr(2+), or Ba(2+) lead to a decrease in the fluorescence emission first, then an increase and blue shift in emission could be found at the end.  相似文献   

20.
Kim S  Noh JY  Kim KY  Kim JH  Kang HK  Nam SW  Kim SH  Park S  Kim C  Kim J 《Inorganic chemistry》2012,51(6):3597-3602
In this study, an assay to quantify the presence of aluminum ions using a salicylimine-based receptor was developed utilizing turn-on fluorescence enhancement. Upon treatment with aluminum ions, the fluorescence of the sensor was enhanced at 510 nm due to formation of a 1:1 complex between the chemosensor and the aluminum ions at room temperature. As the concentration of Al(3+) was increased, the fluorescence gradually increased. Other metal ions, such as Na(+), Ag(+), K(+), Ca(2+), Mg(2+), Hg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Cr(3+), Fe(3+), and In(3+), had no such significant effect on the fluorescence. In addition, we show that the probe could be used to map intracellular Al(3+) distribution in live cells by confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号