首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The kinetics of the reactions of the nitrogen-sulfur(VI) esters 4-nitrophenyl N-methylsulfamate (NPMS) with a series of pyridines and a series of alicyclic amines and of 4-nitrophenyl N-benzylsulfamate (NPBS) with pyridines, alicyclic amines, and a series of quinuclidines have been investigated in acetonitrile (ACN) in the presence of excess amine at various temperatures. Pseudo-first-order rate constants (k(obsd)) have been obtained by monitoring the release of 4-nitrophenol/4-nitrophenoxide. From the slope of a plot of k(obsd) vs [amine], second-order rate constants (k'(2)) have been obtained for the pyridinolysis of NPMS, and a Br?nsted plot of log k'(2) vs pK(a) of pyridine gave a straight line with beta = 0.45. However, aminolysis with alicyclic amines of NPMS gave a biphasic Br?nsted plot (beta(1) = 0.6, beta(2) approximately equal to 0). Pyridinolysis and aminolysis with alicyclic amines and quinuclidines of NPBS also gave similar biphasic Br?nsted plots. This biphasic behavior has been explained in terms of a mechanistic change within the E1cB mechanism from an (E1cB)(irrev) (less basic amines) to an (E1cB)(rev) (more basic amines), and the change occurs at approximately the pK(a)'s (in ACN) of NPMS (17.94) and NPBS (17.68). The straight line Br?nsted plot for NPMS with pyridines occurs because the later bases are not strong enough to substantially remove the substrate proton and initiate the mechanistic change observed in the reaction of NPMS with the strong alicyclic amines and quinuclidines. An entropy study supports the change from a bimolecular to a unimolecular mechanism. This is the first clear demonstration of this E1cB mechanistic changeover involving a nitrogen acid substrate.  相似文献   

2.
The chiral Br?nsted acid (1b or 1c) has been shown to initiate the Hosomi-Sakurai reaction of imines with excellent enantioselectivities. The combined Br?nsted acid system has been developed to offer a new class of chiral Br?nsted acid catalysis. The present system proceeds through regeneration of the chiral Br?nsted acid by proton transfer from additional Br?nsted acid to silylated chiral Br?nsted acid, a newly elucidated mechanism for the role of the additional Br?nsted acid.  相似文献   

3.
Two series of structures (1 and 2) possessing intramolecular hydrogen bonds to the lone-pair electrons of carbonyl oxygens have been examined to reveal the influence of the pK(a) of the hydrogen-bond donor on the rate of general-base-catalyzed enolate formation. The geometry of the hydrogen bonds is well accepted to be appropriate for intramolecular hydrogen-bond formation. Yet, as revealed by Br?nsted plots, both series show very little dependence of the rate of enolate formation on the hydrogen-bond donor ability. The intramolecular hydrogen bonds give rate enhancements only on the order of 10-100-fold, and corrected Br?nsted alpha-values are slightly below 0.1. The results can be understood by interpreting them in light of the Principle of Non-Perfect Synchronization. The results are consistent with the proton transfer occurring through an asynchronous transition state with the developing negative charge localized on carbon. We postulate that catalysts of enolate formation will be most effective if the binding groups are focused on stabilizing negative charge that is forming on the enolate carbon rather than on the enolate oxygen.  相似文献   

4.
Assessing the degree of proton transfer from a Br?nsted acid site to one or more adsorbed bases is central to arguments regarding the strength of zeolites and other solid acids. In this regard certain solid-state NMR measurements have been fruitful; for example, some (13)C, (15)N, or (31)P resonances of adsorbed bases are sensitive to protonation, and the (1)H chemical shift of the Br?nsted site itself reflects hydrogen bonding. We modeled theoretically the structures of adsorption complexes of several bases on zeolite HZSM-5, calculated the quadrupole coupling constants (Q(cc)) and asymmetry parameters (eta) for aluminum in these complexes and then in turn simulated the central transitions of their (27)Al MAS NMR spectra. The theoretical line width decreased monotonically with the degree of proton transfer, reflecting structural relaxation around aluminum as the proton was transferred to a base. We verified this experimentally for a series of adsorbed bases by way of single-pulse MAS and triple quantum MQMAS (27)Al NMR. The combined theoretical and experimental approach described here provides a strategy by which (27)Al data can be applied to resolve disputed interpretations of proton transfer based on other evidence.  相似文献   

5.
Two types of chiral Br?nsted acid catalysts have been shown to catalyze regio- and enantioselective nitroso aldol synthesis between nitrosobenzene and achiral enamine. The combination of Br?nsted acidity and amine moiety of enamine realizes complete regioselectivity with high enantioselectivity. After a survey of Br?nsted acid catalysts, 1-naphthyl glycolic acid is found to be optimal in the O-nitroso aldol pathway, while 1-naphthyl TADDOL is the best catalyst for the N-nitroso aldol pathway. This is based on our finding on the control of regioselectivity by changing the amine moiety of enamine and the choice of Br?nsted acidity.  相似文献   

6.
Rate and equilibrium constants were determined for protonation of ring-substituted -methoxystyrenes by hydronium ion and by carboxylic acids to form the corresponding ring-substituted alpha-methyl alpha-methoxybenzyl carbocations at 25 degrees C and I = 1.0 (KCl). The thermodynamic barrier to carbocation formation increases by 14.5 kcal/mol as the phenyl ring substituent(s) is changed from 4-MeO- to 3,5-di-NO2-, and as the carboxylic acid is changed from dichloroacetic to acetic acid. The Br?nsted coefficient alpha for protonation by carboxylic acids increases from 0.67 to 0.77 over this range of phenyl ring substituents, and the Br?nsted coefficient beta for proton transfer increases from 0.63 to 0.69 as the carboxylic acid is changed from dichloroacetic to acetic acid. The change in these Br?nsted coefficients with changing reaction driving force, (inverted theta)alpha/ (inverted theta) deltaG(av) degrees=(inverted theta)beta/(inverted theta)delta G(av) degrees= 1/8lambda = 0.011, is used to calculate a Marcus intrinsic reaction barrier of lambda= 11 kcal/mol which is close to the barrier of 13 kcal/mol for thermoneutral proton transfer between this series of acids and bases. The value of alpha= 0.66 for thermoneutral proton transfer is greater than alpha= 0.50 required by a reaction that follows the Marcus equation. This elevated value of beta may be due to an asymmetry in the reaction coordinate that arises from the difference in the intrinsic barriers for proton transfer at the oxygen acid reactant and resonance-stabilized carbon acid product.  相似文献   

7.
A kinetic study of the reversible deprotonation of benzofuran-3(2H)-one (3H-O) and benzothiophene-3(2H)-one (3H-S) by amines and hydroxide ion in water at 25 degrees C is reported. The respective conjugate bases, 3--O and 3--S, represent benzofuran and benzothiophene derivatives, respectively, and thus are aromatic. The main question addressed in this paper is whether this aromaticity has the effect of enhancing or lowering intrinsic barriers to proton transfer. These intrinsic barriers were either determined from Br?nsted plots for the reactions with amines or calculated on the basis of the Marcus equation for the reaction with OH-; they were found to be lower for the more highly aromatic benzothiophene derivative, indicating that aromaticity lowers the intrinsic barrier. It is shown that the reduction in the intrinsic barrier is not an artifact of other factors such as inductive, steric, resonance, polarizability, and pi-donor effects, although these factors affect the intrinsic barriers in a major way. Our results imply that aromatic stabilization of the transition state is ahead of proton transfer; this contrasts with simple resonance effects, which typically lag behind proton transfer at the transition state, thereby increasing intrinsic barriers.  相似文献   

8.
[Structure: see text] A new Br?nsted acid-assisted chiral Br?nsted (chiral BBA) acid catalyst (1) was developed by substituting a hydroxy group of optically active 1,1'-bi(2-naphthol) with a stronger Br?nsted acidic group such as a bis(trifluoromethanesulfonyl)methyl group. The enantioselective Mannich-type reaction of ketene silyl acetals with aldimines catalyzed by (R)-1 in the presence of stoichiometric achiral proton sources gave (S)-beta-amino esters in high yield with moderate to good enantiomeric excesses.  相似文献   

9.
The deuterium enrichment of dihydroxyacetone obtained from the aldose-ketose isomerization of D,L-glyceraldehyde in D(2)O at 25 degrees C was determined by (1)H NMR spectroscopy from the integrated areas of the signals for the alpha-CH(2) and alpha-CHD groups of the product. One mole equivalent of deuterium is incorporated into the product when the isomerization is carried out in 150 mM pyrophosphate buffer at pD 8.4, but only 0.6 mol equiv of deuterium is incorporated into the product of isomerization in the presence of 0.01 M deuterioxide ion, so that 40% of the latter isomerization reaction proceeds by the intramolecular transfer of hydride ion. Several pathways were identified for catalysis of the isomerization of glyceraldehyde to give dihydroxyacetone. The isomerization with hydride transfer is strongly catalyzed by added Zn(2+). Deprotonation of glyceraldehyde is rate-determining for isomerization with proton transfer, and this proton-transfer reaction is catalyzed by Br?nsted bases. Proton transfer also occurs by a termolecular pathway with catalysis by the combined action of Br?nsted bases and Zn(2+). These results show that there is no large advantage to the spontaneous isomerization of glyceraldehyde in alkaline solution with either proton or hydride transfer, and that effective catalytic pathways exist to stabilize the transition states for both of these reactions in water. The existence of separate enzymes that catalyze the isomerization of sugars with hydride transfer and the isomerization of sugar phosphates with proton transfer is proposed to be a consequence of the lack of any large advantage to reaction by either of these pathways for the corresponding nonenzymatic isomerization in water.  相似文献   

10.
Using an IRMS-TPD (temperature programmed desorption) of ammonia, we studied the nature, strength, crystallographic location, and distribution of acid sites of mordenite. In this method, infrared spectroscopy (IR) and mass spectroscopy (MS) work together to follow the thermal behavior of adsorbed and desorbed ammonia, respectively; therefore, adsorbed species were identified, and their thermal behavior was directly connected with the desorption of ammonia during an elevation of temperature. IR-measured TPD of the NH4(+) cation was similar to MS-measured TPD, thus showing the nature of Br?nsted acidity. From the behavior of OH bands, it was found that the Br?nsted acid sites consisted of two kinds of OH bands at high and low wavenumbers, ascribable to OH bands situated on 12- and 8-member rings (MR) of mordenite structure, respectively. The amount and strength of these Br?nsted hydroxyls were measured quantitatively based on a theoretical equation using a curve fitting method. Up to ca. 30% of the exchange degree, NH4(+) was exchanged with Na+ on the 12-MR to arrive at saturation; therefore, in this region, the Br?nsted acid site was situated on the large pore of 12-MR. The NH4(+) cation was then exchanged with Na+ on 8-MR, and finally exceeded the amount on 12-MR. In the 99% NH4-mordenite, Br?nsted acid sites were located predominantly on the 8-MR more than on the 12-MR. Irrespective of the NH4(+) exchange degree, the strengths deltaH of Br?nsted OH were 145 and 153 kJ mol(-1) on the 12- and 8-MR, respectively; that is, the strength of Br?nsted acid site on the 8-MR was larger than that on the 12-MR. A density functional theory (DFT) calculation supported the difference in the strengths of the acid sites. Catalytic cracking activity of the Br?nsted acid sites on the 8-MR declined rapidly, while that on the 12-MR was remarkably kept. The difference in strength and/or steric capacity may cause such a difference in the life of a catalyst.  相似文献   

11.
The metal-support interaction of a dispersed Pt atom on H-ZSM-5 zeolite has been investigated by using an embedded cluster and cluster models with the density functional theory/B3LYP functional method. We found that the Pt atom interacts with a Br?nsted proton and a nearby framework oxygen. Interaction with the framework oxygen causes electron transfer from the zeolite to the Pt atom. Concurrently, a Br?nsted proton stabilizes the Pt atom on the zeolite surface by withdrawing excess electron density from the Pt atom. These charge transfers result in a zero net charge on the Pt atom while changing its orbital occupation. The binding energy of Pt on the Br?nsted acid was 15 kcal/mol. Inclusion of the Madelung potential by Surface Charge Representation of the Electrostatic Embedded Potential method (SCREEP) had small effects on structure and charge density of Pt/H-ZSM-5 but it shifted the stretching mode of CO toward a higher frequency by almost 40 cm(-1). The frequency shift of absorbed CO calculated with embedded cluster models was from 8 to 11 cm(-1) red shift, compared to 20 cm(-1) red shift from experiment. This implies that not only the electronic state of the Pt atom but also the Madelung potential of the support is responsible for the observed small red shift of CO on the Pt-H-ZSM-5.  相似文献   

12.
Recently, the proton affinity (PA) of ozone was experimentally determined by Cacace and Speranza [Science (1994) 265: 208] using a bracketing technique that involved the proton transfer (PT) reactions: O3H++B⇒O3+BH+; for different Br?nsted bases B. These authors showed that the simple collision model is not adequate to describe PT. We now present a theoretical model reflecting this bracketing procedure by explicitly introducing H-bonding complexing, dissociation and PT contributions, to discuss the kinetic model that assumes that PT occurs through one elementary step. The methods used include semiempirical density functional theory and ab initio Hartree-Fock methods. The procedure is gauged by using estimated PA of ozone obtained from deprotonation reactions including the Br?nsted bases BNH3, H2O, HOCl, SO2, CH3F and Kr. The PA-obtained range was from 145.3 to 160.3 kcal/mol, in fair agreement with the experimental value of 148.0±3 kcal/mol. The model seems to be fairly independent of the reference bases used to evaluate the PA. H-bonding effects appear to be a determining factor to explain collision efficiencies. Received: 5 August 1997 / Accepted: 25 September 1997  相似文献   

13.
Mechanistic studies of the enolization of 2-methylcyclohexanone mediated by lithium hexamethyldisilazide (LiHMDS; TMS2NLi) in toluene and toluene/amine mixtures are described. NMR spectroscopic studies of LiHMDS/ketone mixtures in toluene reveal the ketone-complexed cyclic dimer (TMS2NLi)2(ketone). Rate studies using in situ IR spectroscopy show the enolization proceeds via a dimer-based transition structure, [(TMS2NLi)2(ketone)]++. NMR spectroscopic studies of LiHMDS/ketone mixtures in the presence of relatively unhindered trialkylamines such as Me2NEt reveal the quantitative formation of cyclic dimers of general structure (TMS2NLi)2(R3N)(ketone). Rate studies trace a >200-fold rate acceleration to a dimer-based transition structure, [(TMS2NLi)2(R3N)(ketone)]++. Amines of intermediate steric demand, such as Et3N, are characterized by recalcitrant solvation, saturation kinetics, and exceptional (>3000-fold) accelerations traced to the aforementioned dimer-based pathway. Amines of high steric demand, such as i-Pr2NEt, do not observably solvate (TMS2NLi)2(ketone) but mediate enolization via [(TMS2NLi)2(R3N)(ketone)]++ with muted accelerations. The most highly hindered amines, such as i-Bu3N, do not influence the LiHMDS structure or the enolization rate. Overall, surprisingly complex dependencies of the enolization rates on the structures and concentrations of the amines derive from unexpectedly simple steric effects. The consequences of aggregation, mixed aggregation, and substrate-base precomplexation are discussed.  相似文献   

14.
The induction of strain in carbocycles, thereby increasing the amount of s-character in the C-H bonds and the acidity of these protons, has been probed with regard to its effect on the rate constants for the enolization of cyclobutanone. The second-order rate constants for the general base-catalyzed enolization of cyclobutanone have been determined for a series of 3-substituted quinuclidine buffers in D(2)O at 25 °C, I = 1.0 M (KCl). The rate constants for enolization were determined by following the extent of deuterium incorporation (up to ~30% of the first α-proton) into the α-position, as a function of time. The observed pseudo-first-order rate constants correlated to the [basic form] of the buffer and yielded the second-order rate constants for the general base-catalyzed enolization of cyclobutanone for four tertiary amine buffers. A Br?nsted β-value of 0.59 was determined from the second-order rate constants determined. Comparison of the results for cyclobutanone to those previously reported for acetone and a 1-phenylacetone derivative, under similar conditions, indicated that the ring strain of the carbocycle appeared to have only a small effect on the general base-catalyzed rate constants for enolization. The similarity of the rate constants for the general base-catalyzed enolization of cyclobutanone to those determined for acetone allowed for an estimation of the limits of the rate constant for protonation of the enolate intermediate of cyclobutanone by the conjugate acid of 3-quinuclidinone (k(BH) = 5 × 10(8) - 2 × 10(9) M(-1) s(-1)). Combining the rate constants for deprotonation of cyclobutanone (k(B)) and protonation of the enolate of cyclobutanone (k(BH)) by 3-quinuclidinone and its conjugate acid, the pK(a) of the α-protons of cyclobutanone has been estimated to be pK(a) = 19.7-20.2.  相似文献   

15.
N-aroyl beta-lactams are imides with exo- and endocyclic acyl centres which react with amines in aqueous solution to give the ring opened beta-lactam aminolysis product. Unlike the strongly base catalysed aminolysis of beta-lactam antiobiotics, such as penicillins and cephaloridines, the rate law for the aminolysis of N-aroyl beta-lactams is dominated by a term with a first-order dependence on amine concentration in its free base form, indicative of an uncatalysed aminolysis reaction. The second-order rate constants for this uncatalysed aminolysis of N-p-methoxybenzoyl beta-lactam with a series of substituted amines generates a Br?nsted betanuc value of +0.90. This is indicative of a large development of positive effective charge on the amine nucleophile in the transition state. Similarly, the rate constants for the reaction of 2-cyanoethylamine with substituted N-aroyl beta-lactams gives a Br?nsted betalg value of -1.03 for different amide leaving groups and is indicative of considerable change in effective charge on the leaving group in the transition state. These observations are compatible with either a late transition state for the formation of the tetrahedral intermediate of a stepwise mechanism or a concerted mechanism with simultaneous bond formation and fission in which the amide leaving group is expelled as an anion. Amide anion expulsion is also indicated by an insignificant solvent kinetic isotope effect, kH2ORNH2/kD2ORNH2, of 1.01 for the aminolysis of N-benzoyl beta-lactam with 2-methoxyethylamine. The Br?nsted betalg value decreases from -1.03 to -0.71 as the amine nucleophile is changed from 2-cyanoethylamine to propylamine. The Br?nsted betanuc value is more invariant although it changes from +0.90 to +0.85 on changing the amide leaving group from p-methoxy to p-chloro substituted. The sensitivity of the Br?nsted betanuc and betalg values to the nucleofugality of the amide leaving group and the nucleophilicity of the amine nucleophiles, respectively, indicate coupled bond formation and bond fission processes.  相似文献   

16.
Reaction of the indium tin oxide (ITO) surface with Br?nsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH, suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Br?nsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude, and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications.  相似文献   

17.
The investigation of proton exchange dynamics at carbon atoms has been so far limited to molecules activated by an electron-withdrawing substituent or by the removal of one electron yielding the corresponding cation radical. A method is proposed to overcome this limitation and extend the gathering of data to nonactivated carbon acids, RH. It consists of using photoinjected electrons to generate the radical R. from a rapidly or concertedly cleaving substrate, RX. The variations of the radical "polarogram" (in which R. is converted into R-) upon addition of an acid are then exploited to derive the protonation rate constant of R-. The method is demonstrated with the example of the diphenylmethyl carbanion. The Br?nsted plot thus obtained indicates that proton transfer to this carbanion is intrinsically slow, with a barrier on the order of 1 eV. An inverted region behavior seems to appear at large driving forces.  相似文献   

18.
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(?) + TyrOH → TyrOH + TyrO(?), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Br?nsted slope of ?. In contrast, for water-mediated PCET, we observe integer Br?nsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Br?nsted analysis.  相似文献   

19.
A new method for the Br?nsted acid-catalyzed addition of amide nucleophiles to imines to produce protected aminal products is described. Simple Br?nsted acids (phenyl phosphinic acid and trifluoromethanesulfonimide) were shown to be excellent catalysts, providing high yields of the aminal product. A catalytic asymmetric imine amidation using sulfonamides as nucleophiles was successful when a hindered biaryl phosphoric acid catalyst derived from 2,2'-diphenyl-[3,3'-biphenanthrene]-4,4'-diol (VAPOL) was used. Excellent yields and enantioselectivities were found in these additions (up to 99% ee).  相似文献   

20.
Ionic bond or hydrogen bridge? Br?nsted proton transfer to nitrogen acceptors in organic crystals causes strong N1s core-level binding energy shifts. A study of 15 organic cocrystal and salt systems shows that standard X-ray photoelectron spectroscopy (XPS) can be used as a complementary method to X-ray crystallography for distinguishing proton transfer from H-bonding in organic condensed matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号