首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively exploited in biomedicine, especially as contrasting agents. In this work, SPIONs are of our interest as directing agents to the targeted dendritic cells (DCs). Mannan extracted from Saccharomyces cerevisiae was used as DCs targeting moieties. Herein, nanocomposites of silica magnetic nanoparticle-mannan (S-SPION-MN) were successfully synthesized as a magnetically assisted delivery system. The materials before Silica magnetic nanoparticles (S-SPION) and after mannan modification were characterized using a vibrating sample magnetometer to confirm their superparamagnetic character. The change in zeta potential from highly negative charge to slightly negative charge of the composites suggested the successful attachment of mannan on their surface. Chemical analysis using x-ray photoelectron spectroscopy revealed the attachment of mannan through chemical bonding, corresponding to the observation of high stability of the particles over a two-week period. The synthesized materials were investigated for cytotoxicity, DC maturation, cytokine production, and cellular uptake. Moderate cell viability was observed after stimulating cells with the particulate mannan, S-SPION-MN, due to high activation of DCs. Under a magnetic induction, S-SPION-MN showed significant enhancement of DCs targeting within 15 min. Owing to the incorporation of mannan and SPIONs, the S-SPION-MN greatly enhanced cellular uptake and accordingly resulted in high DC activation and maturation. The resulted nanocomposites can be beneficial as a potential candidate in antigen delivery to targeted immune cells for further in vivo study.  相似文献   

2.
Targeted drug delivery systems have attracted increasing attention due to their ability for delivering anticancer drugs selectively to tumor cells. Folic acid (FA)‐conjugated targeted block copolymers, FA‐Pluronic‐polycaprolactone (FA‐Pluronic‐PCL) are synthesized in this study. The anticancer drug paclitaxel (PTX) is loaded in FA‐Pluronic‐PCL nanoparticles by nanoprecipitation method. The in vitro release of PTX from FA‐Pluronic‐PCL nanoparticles shows slow and sustained release behaviors. The effect of FA ligand density of FA‐Pluronic‐PCL nanoparticles on their targeting properties is examined by both cytotoxicity and fluorescence methods. It is shown that FA‐Pluronic‐PCL nanoparticles indicated better targeting ability than non‐targeted PCL‐Pluronic‐PCL nanoparticles. Furthermore, FA‐F127‐PCL nanoparticle with 10% FA molar content has more effective antitumor activity and higher cellular uptake than those with 50% and 91% FA molar content. These results prove that FA‐F127‐PCL nanoparticle with 10% FA molar content can be a better candidate as the drug carrier in targeted drug delivery systems.  相似文献   

3.
We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.  相似文献   

4.
In this research, we develop dual modality molecular imaging and also radio-immunotherapy (RIT) bioprobes, in the form of modified superparamagnetic iron oxide nanoparticles (SPIONs) conjugated to radiolabeled antibodies, for PET and MRI of HER2 expressing cancers as well as a PH sensitive drug carrier by embedded an anticancer agent for cancer therapeutic applications. The bioprobes were developed by conjugating 64Cu labeled trastuzumab (herceptin) and rituximab (Anti CD-20) antibodies to modified SPIONs. The SPIONs were modified with carboxymethyl chitosan and functionalized with acrylic acid (AA). Also, with the purpose of identifying more effective bifunctional chelator (BFC), we compared the properties of novel BFC, p-NO2-Bn-PCTA with the commonly used DOTA-NHS for radio-immunoconjugate preparations. Moreover, a chemotherapy drug, doxorubicin, was then loaded onto engineered nanoparticles for targeted intracellular drug delivery and selective cancer cell killing. Resulting radio-immunoconjugated-SPIONs were evaluated for molecular imaging and effective targeting of the HER2+ receptors in SKBR3 cell lines and breast tumor bearing Balb/C mice. Therefore, our biocompatible SPIONs could serve as a promising multifunctional theranostics nanoplatform in dual modality imaging guided RIT of HER2 overexpressing cancer applicable to drug delivery and controlled drug release for trigger both intrinsic and extrinsic pathways of apoptosis.  相似文献   

5.
We describe a simple method for synthesizing superparamagnetic nanoparticles (SPIONs) as small, stable contrast agents for magnetic resonance imaging (MRI) based on sulfobetaine zwitterionic ligands. SPIONs synthesized by thermal decomposition were coated with zwitterions to impart water dispersibility and high in vivo stability through the nanoemulsion method. Zwitterion surfactant coating layers are formed easily on oleic acid-stabilized SPIONs via hydrophobic and van der Waals interactions. Our zwitterion-coated SPIONs (ZSPIONs) had ultrathin (~5 nm) coating layers with mean sizes of 12.0 ± 2.5 nm, as measured by dynamic light scattering (DLS). Upon incubation in 1 M NaCl and 10% FBS, the ZSPIONs showed high colloidal stabilities without precipitating, as monitored by DLS. The T2 relaxivity coefficient of the ZSPIONs, obtained by measuring the relaxation rate on the basis of the iron concentration, was 261 mM(-1) s(-1). This value was much higher than that of the commercial T2 contrast agent because of the ultrathin coating layer. Furthermore, we confirmed that ZSPIONs can be used as MR contrast agents for in vivo applications such as tumor imaging and lymph node mapping.  相似文献   

6.
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising materials for various biomedical applications including targeted drug delivery and imaging, hyperthermia, magneto-transfections, gene therapy, stem cell tracking, molecular/cellular tracking, magnetic separation technologies (e.g. rapid DNA sequencing), and detection of liver and lymph node metastases. The most recent applications for SPIONs for early detection of inflammatory, cancer, diabetes and atherosclerosis have also increased their popularity in academia. In order to increase the efficacy of SPIONs in the desired applications, especial surface coating/characteristics are required. The aim of this article is to review the surface properties of magnetic nanoparticles upon synthesis and the surface engineering by different coatings. The biological aspects, cytotoxicity, and health risks are addressed. Special emphasis is given to organic and inorganic-based coatings due to their determinant role in biocompatibility or toxicity of the final particles.  相似文献   

7.
We report a facile approach to fabricating low‐generation poly(amidoamine) (PAMAM) dendrimer‐stabilized gold nanoparticles (Au DSNPs) functionalized with folic acid (FA) for in vitro and in vivo targeted computed tomography (CT) imaging of cancer cells. In this study, amine‐terminated generation 2 PAMAM dendrimers were employed as stabilizers to form Au DSNPs without additional reducing agents. The formed Au DSNPs with an Au core size of 5.5 nm were covalently modified with the targeting ligand FA, followed by acetylation of the remaining dendrimer terminal amines to endow the particles with targeting specificity and improved biocompatibility. Our characterization data show that the formed FA‐modified Au DSNPs are stable at different pH values (5—8) and temperatures (4–50 °C), as well as in different aqueous media. MTT assay data along with cell morphology observations reveal that the FA‐modified Au DSNPs are noncytotoxic in the particle concentration range of 0–3000 nM . X‐ray attenuation coefficient measurements show that the CT value of FA‐modified Au DSNPs is much higher than that of Omnipaque (a clinically used CT contrast agent) at the same concentration of the radiodense elements (Au or iodine). Importantly, the FA‐modified Au DSNPs are able to specifically target a model cancer cell line (KB cells, a human epithelial carcinoma cell line) over‐expressing FA receptors and they enable targeted CT imaging of the cancer cells in vitro and the xenografted tumor model in vivo after intravenous administration of the particles. With the simple synthesis approach, easy modification, good cytocompatibility, and high X‐ray attenuation coefficient, the FA‐modified low‐generation Au DSNPs could be used as promising contrast agents for targeted CT imaging of different tumors over‐expressing FA receptors.  相似文献   

8.
Nanoparticles have been widely used for a variety of biomedical applications and there is a growing need for highly specific and efficient uptake of the nanoparticles into target cells. Poly(ethylene glycol) (PEG), folic acid (FA), and their conjugate PEG-FA were attached to magnetite nanoparticles to compare their effects on the improvement of intracellular uptake of the nanoparticles to human breast cancer cells, BT-20. AFM and TEM results indicated that the nanoparticles after surface modification were monodisperse, with coatings on individual nanoparticles. The cell culture experiments showed that the PEG-FA coated nanoparticles were internalized into BT-20 cancer cells and exhibited higher efficiency of intracellular uptake than only PEG- or FA-coated nanoparticles. The surface modification protocols can also be used to modify the surfaces of other nanoparticles for targeting intracellular delivery.  相似文献   

9.
Magnetosomes are specialized organelles arranged in intracellular chains in magnetotactic bacteria. The superparamagnetic property of these magnetite crystals provides potential applications as contrast-enhancing agents for magnetic resonance imaging. In this study, we compared two different nanoparticles that are bacterial magnetosome and HSA-coated iron oxide nanoparticles for targeting breast cancer. Both magnetosomes and HSA-coated iron oxide nanoparticles were chemically conjugated to fluorescent-labeled anti-EGFR antibodies. Antibody-conjugated nanoparticles were able to bind the MDA-MB-231 cell line, as assessed by flow cytometry. To compare the cytotoxic effect of nanoparticles, MTT assay was used, and according to the results, HSA-coated iron oxide nanoparticles were less cytotoxic to breast cancer cells than magnetosomes. Magnetosomes were bound with higher rate to breast cancer cells than HSA-coated iron oxide nanoparticles. While 250 μg/ml of magnetosomes was bound 92 ± 0.2%, 250 μg/ml of HSA-coated iron oxide nanoparticles was bound with a rate of 65 ± 5%. In vivo efficiencies of these nanoparticles on breast cancer generated in nude mice were assessed by MRI imaging. Anti-EGFR-modified nanoparticles provide higher resolution images than unmodified nanoparticles. Also, magnetosome with anti-EGFR produced darker image of the tumor tissue in T2-weighted MRI than HSA-coated iron oxide nanoparticles with anti-EGFR. In vivo MR imaging in a mouse breast cancer model shows effective intratumoral distribution of both nanoparticles in the tumor tissue. However, magnetosome demonstrated higher distribution than HSA-coated iron oxide nanoparticles according to fluorescence microscopy evaluation. According to the results of in vitro and in vivo study results, magnetosomes are promising for targeting and therapy applications of the breast cancer cells.  相似文献   

10.
We report the fabrication and characterization of antifouling polymer-coated magnetic nanoparticles as nanoprobes for magnetic resonance (MR) contrast agents. Magnetite superparamagnetic iron oxide nanoparticles (SPION) were coated with the protein- or cell-resistant polymer, poly(TMSMA-r-PEGMA), to generate stable, protein-resistant MR probes. Coated magnetic nanoparticles synthesized using two different preparation methods (in situ and stepwise, respectively) were both well dispersed in PBS buffer at a variety of pH conditions (pH 1-10). In addition, dynamic light scattering data revealed that their sizes were not altered even after 24 h of incubation in 10% serum containing cell culture medium, indicative of a lack of protein adsorption on their surfaces. When the antibiofouling polymer-coated SPION were incubated with macrophage cells, uptake was significantly lower in comparison to that of the popular contrast agent, Feridex I.V., suggesting that the polymer-coated SPION can be long-circulated in plasma by escaping from uptake by the reticular endothelial system (RES) such as macrophages. Indeed, when the coated SPION were administered to tumor xenograft mice by intravenous injection, the tumor could be detected in T2-weighted MR images within 1 h as a result of the accumulation of the nanomagnets within the tumor site. Although the poly(TMSMA-r-PEGMA)-coated SPION do not have any targeting ligands on their surface, they are potentially useful for cancer diagnosis in vivo.  相似文献   

11.
支德福  白宇超  张琳  张树彪 《化学通报》2017,80(11):987-994,1060
基于超顺磁性Fe3O4纳米粒子(SPIONs)磁响应型纳米药物载体已经广泛应用于肿瘤诊断与治疗方面。将SPIONs用多功能性外壳修饰后,能够使其稳定性增加,实现体内长循环,并能缓释出所携带药物;再将其靶向性配体分子复合后,能够提高其肿瘤多靶向的效果;通过将SPIONs用温敏性或光敏性等外壳材料包覆,利用SPIONs的磁致发热、光致发热以及外壳材料自身的特点,能够直接杀死肿瘤细胞或者将温敏性外壳剥落,平稳地释放出药物,提高肿瘤部位的药物浓度,增强治疗效果。因此,本文综述了基于SPIO的磁响应型纳米药物载体在肿瘤治疗领域的新研究与新进展,并进行研究展望,以期为今后相关方面的深入研究提供参考和借鉴。  相似文献   

12.
The uptake of nanoparticles by cells of the mononuclear phagocytic system limits its use as colloidal drug carriers, reducing the blood circulation time and the ability to reach biological targets. In this work, the interaction between dextrin nanoparticles – recently developed in our laboratory – and murine bone marrow-derived macrophages was evaluated. Cytotoxicity and nitric oxide production were studied, using the MTT assay and the Griess method, respectively. FITC labelled nanoparticles were used to assess the phagocytic uptake and blood clearance after intravenous injection. The phagocytic uptake was analysed in vitro by confocal laser scanning microscopy and fluorescence activated cell sorting. The results show that the nanoparticles are not cytotoxic and do not stimulate the production of nitric oxide by macrophages, in the range of concentrations studied. Nanoparticles are phagocytosed by macrophages and are detected inside the cells, concentrated in cellular organelles. The blood clearance study showed that the blood removal of the nanoparticles occurs with a more pronounced rate in the first 3 h after intravenous administration, with about 30% of the material remaining in systemic circulation at this stage. Given the fairly high blood circulation time and biocompatibility, the dextrin nanoparticles are promising carriers for biomedical applications. Both applications targeting phagocytic, antigen-presenting cells (for vaccination purposes) and different tissues (as drug carriers) may be envisaged, by modulation of the surface properties.  相似文献   

13.
Transition metals have been successfully applied to catalyze non‐natural chemical transformations within living cells, with the highly efficient labeling of subcellular components and the activation of prodrugs. In vivo applications, however, have been scarce, with a need for the specific cellular targeting of the active transition metals. Here, we show the design and application of cancer‐targeting palladium catalysts, with their specific uptake in brain cancer (glioblastoma) cells, while maintaining their catalytic activity. In these cells, for the first time, two different anticancer agents were synthesized simultaneously intracellularly, by two totally different mechanisms (in situ synthesis and decaging), enhancing the therapeutic effect of the drugs. Tumor specificity of the catalysts together with their ability to perform simultaneous multiple bioorthogonal transformations will empower the application of in vivo transition metals for drug activation strategies.  相似文献   

14.
Folate-aminocaproic acid-doxorubicin (FA-AMA-hyd-DOX) was firstly synthesized by our group. It was indicated that FA-AMA-hyd-DOX was pH-responsive, and had strong cytotoxicity on a folate receptor overexpressing cell line (KB cells) in vitro. The aim of our study was to further explore the potential use of FA-AMA-hyd-DOX as a new therapeutic drug for breast cancer. The cellular uptake and the antiproliferative activity of the FA-AMA-hyd-DOX in MDA-MB-231 cells were measured. Compared with DOX, FA-AMA-hyd-DOX exhibited higher targeting ability and cytotoxicity to FR-positive tumor cells. Subsequently, the tissue distribution of FA-AMA-hyd-DOX was studied, and the result confirmed that DOX modified by FA can effectively increase the selectivity of drugs in vivo. After determining the maximum tolerated dose (MTD) of FA-AMA-hyd-DOX in MDA-MB-231 tumor-bearing nude mice, the antitumor effects and the in vivo safety of FA-AMA-hyd-DOX were systematically evaluated. The data showed that FA-AMA-hyd-DOX could effectively increase the dose of DOX tolerated by tumor-bearing nude mice and significantly inhibit MDA-MB-231 tumor growth in vivo. Furthermore, FA-AMA-hyd-DOX treatment resulted in almost no obvious damage to the mice. All the positive data suggest that FA-targeted FA-AMA-hyd-DOX is a promising tumor-targeted compound for breast cancer therapy.  相似文献   

15.
In this study,a targeting micellar drug delivery system was developed for intravesical instilled chemotherapy of bladder cancer.The amphiphilic diblock copolymer poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEO) with functional amino group (NH2) at the end of PEO block was synthesized.Then the copolymer was conjugated with folic acid (FA) and fluorescein isothiocyannate (FITC) via the PEO-NH2 terminus,and then assembled into micelles with the target moiety and fluorescence labeling.In addition,drug loaded micelles were also fabricated with anticancer drug doxorubicin (DOX) encapsulated in the hydrophobic core.The micelles were characterized in terms of size,drug loaded efficiency and critical micellization concentration (CMC) by means ofDLS,UV and fluorescence spectra.In vitro cellular uptake and cytotoxicity studies showed that FA modified PCL-b-PEO-FA micelles have a greater targeting efficiency to human bladder cancer cell (T-24 cell) compared to PCL-b-PEO-NH2 micelles due to the conjugation of FA on the surface,while no targeting effect to normal tissue originated human embryonic kidney 293 (HEK-293) cells was observed,enabling the micelles a promising drug carrier for intravesical instilled chemotherapy of bladder cancer.  相似文献   

16.
Superparamagnetic iron oxide nanoparticles (SPIONs) are being increasingly used in various biomedical processes such as hyperthermia, cell and protein separation, enhancing resolution of magnetic resonance imaging and drug delivery. Here, SPIONs were prepared by optimized co-precipitation of iron chlorides in basic medium and then coated with gold. Bare SPIONs and Aucoated SPIONs were characterized by TEM before incubation with fetal bovine serum for 0.5, 1, 2, 4, 8 and 24 h. After these interaction times, the mixture was deposed on a small column in a strong magnetic field (MACS?system). The SPIONs were retained; different washing fractions were collected and studied by UV-Vis spectroscopy and by 1D gel electrophoresis. The study revealed the presence of proteins in the washing solutions and confirmed the strong interaction of the protein with the SPIONs.  相似文献   

17.
《中国化学会会志》2018,65(2):231-242
A stable and biocompatible targeting complex CFNs@PEG‐FA is developed. The initially synthesized cobalt ferrite nanoparticles (CFNs) were treated with poly(ethylene glycol) (PEG) in order to improve biocompatibility of the CFNs. Citric acid (CA) was used as the coupling agent, which made PEG to bond with the CFNs. CFNs@PEG were conjugated with folic acid (FA) to synthesize CFNs@PEG‐FA, which was capable of targeting the FA receptor positive (FAR+) cancer cells. Synthesized nanoparticles were physically and chemically analyzed using EDX, FT‐IR, XRD, TGA, FESEM, TEM, DLS, and VSM. The biocompatibility of CFNs@PEG‐FA was assessed in vitro on HSF 1184 (human skin fibroblast cells) and HeLa (human cervical cancer cell, FAR+) using MTT assay and AO/EB staining florescence method. High level of CFNs@PEG‐FA binding to HeLa was confirmed through quantitative and qualitative in vitro targeting studies. Results show that CFNs@PEG‐FA can be a potential biomaterial for use in biomedical trials, especially magnetic hyperthermia. The findings through this in vitro study are to be compared in future with those of in vivo studies.  相似文献   

18.
Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.  相似文献   

19.
The study of hydrogen bonding interactions at the level of functionalized nanoparticles remains highly challenging and poorly explored area. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) were orthogonally functionalized using receptors bearing multiple hydrogen bonding motifs. Pristine SPIONs were modified by wet chemical processes with Hamilton receptors (hosts), or cyanurate-guest molecules linked to phosphonic acid moieties for monolayer functionalization. The modified surfaces were fully characterized and the number of attached ligands on the surface were determined. The host-guest interactions on the interface of modified SPIONs were investigated by using UV-Vis spectroscopic titrations. Functionalized SPIONs demonstrated two to three magnitudes stronger binding affinities as compared to the related molecular interactions in solution due to synergistic effects on complex surface environment. Higher supramolecular binding ratios of host-guest interactions on the modified surface were emerged. These studies provide fundamental insights into supramolecular complexations on the surface at solid-liquid interface systems with applications in engineered nanomaterials, nano-sensing devices, and drug delivery systems.  相似文献   

20.
Gold nanoshell around super paramagnetic iron oxide nanoparticles (SPIONs) was synthesized and small angle X-ray scattering (SAXS) analysis suggests a gold coating of approximately 0.4 to 0.5 nm thickness. On application of low frequency oscillating magnetic fields (44 - 430 Hz), a four- to five-fold increase in the amount of heat released with gold-coated SPIONs (6.3 nm size) in comparison with SPIONs (5.4 nm size) was observed. Details of the influence of frequencies of oscillating magnetic field, concentration and solvent on heat generation are presented. We also show that, in the absence of oscillating magnetic field, both SPIONs and SPIONs@Au are not particularly cytotoxic to mammalian cells (MCF-7 breast carcinoma cells and H9c2 cardiomyoblasts) in culture, as indicated by the reduction of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium by viable cells in a phenazine methosulfate-assisted reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号