首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although aryl phosphates have been the subject of numerous experimental studies, far less data bearing on the mechanism and transition states for alkyl phosphate reactions have been presented. Except for esters with very good leaving groups such as 2,4-dinitrophenol, the monoanion of phosphate esters is more reactive than the dianion. Several mechanisms have been proposed for the hydrolysis of the monoanion species. (18)O kinetic isotope effects in the nonbridging oxygen atoms and in the P-O(R) ester bond, and solvent deuterium isotope effects, have been measured for the hydrolysis of m-nitrobenzyl phosphate. The results rule out a proposed mechanism in which the phosphoryl group deprotonates water and then undergoes attack by hydroxide. The results are most consistent with a preequilibrium proton transfer from the phosphoryl group to the ester oxygen atom, followed by rate-limiting P-O bond fission, as originally proposed by Kirby and co-workers in 1967. The transition state for m-nitrobenzyl phosphate (leaving group pK(a) 14.9) exhibits much less P-O bond fission than the reaction of the more labile p-nitrophenyl phosphate (leaving group pK(a) = 7.14). This seemingly anti-Hammond behavior results from weakening of the P-O(R) ester bond resulting from protonation, an effect which calculations have shown is much more pronounced for aryl phosphates than for alkyl ones.  相似文献   

2.
A recent study of phosphate monoesters that broke down exclusively through C-O bond cleavage and whose reactivity was unaffected by protonation of the nonbridging oxygens (Byczynski et al. J. Am. Chem. Soc. 2003, 125, 12541) raised several questions about the reactivity of phosphate monoesters, R-O-P(i). Potential catalytic strategies, particularly with regard to selectively promoting C-O or O-P bond cleavage, were investigated computationally through simple alkyl and aryl phosphate monoesters. Both C-O and O-P bonds lengthened upon protonating the bridging oxygen, R-O(H(+))-P(i), and heterolytic bond dissociation energies, DeltaH(C)(-)(O) and DeltaH(O)(-)(P), decreased. Which bond will break depends on the protonation state of the phosphoryl moiety, P(i), and the identity of the organosubstituent, R. Protonating the bridging oxygen when the nonbridging oxygens were already protonated favored C-O cleavage, while protonating the bridging oxygen of the dianion form, R-O-PO(3)(2)(-), favored O-P cleavage. Alkyl R groups capable of forming stable cations were more prone to C-O bond cleavage, with tBu > iPr > F(2)iPr > Me. The lack of effect on the C-O cleavage rate from protonating nonbridging oxygens could arise from two precisely offsetting effects: Protonating nonbridging oxygens lengthens the C-O bond, making it more reactive, but also decreases the bridging oxygen proton affinity, making it less likely to be protonated and, therefore, less reactive. The lack of effect could also arise without bridging oxygen protonation if the ratio of rate constants with different protonation states precisely matched the ratio of acidity constants, K(a). Calculations used hybrid density functional theory (B3PW91/6-31++G) methods with a conductor-like polarizable continuum model (CPCM) of solvation. Calculations on Me-phosphate using MP2/aug-cc-pVDZ and PBE0/aug-cc-pVDZ levels of theory, and variations on the solvation model, confirmed the reproducibility with different computational models.  相似文献   

3.
Isotope effects in the nucleophile and in the leaving group were measured to gain information about the mechanism and transition state of the hydrolysis of methyl p-nitrophenyl phosphate complexed to a dinuclear cobalt complex. The complexed diester undergoes hydrolysis about 1011 times faster than the corresponding uncomplexed diester. The kinetic isotope effects indicate that this rate acceleration is accompanied by a change in mechanism. A large inverse 18O isotope effect in the bridging hydroxide nucleophile (0.937 +/- 0.002) suggests that nucleophilic attack occurs before the rate-determining step. Large isotope effects in the nitrophenyl leaving group (18Olg = 1.029 +/- 0.002, 15N = 1.0026 +/- 0.0002) indicate significant fission of the P-O ester bond in the transition state of the rate-determining step. The data indicate that in contrast to uncomplexed diesters, which undergo hydrolysis by a concerted mechanism, the reaction of the complexed diester likely proceeds via an addition-elimination mechanism. The rate-limiting step is expulsion of the p-nitrophenyl leaving group from the intermediate, which proceeds by a late transition state with extensive bond fission to the leaving group. This represents a substantial change in mechanism from the hydrolysis of uncomplexed aryl phosphate diesters.  相似文献   

4.
Dipolar aprotic cosolvents, such as DMSO and acetonitrile, accelerate the rates of hydrolysis of phosphate monoester dianions. It has been speculated that the rate acceleration arises from the disruption of hydrogen bonding to the phosphoryl group. An aqueous solvation shell can stabilize the dianionic phosphoryl group by forming hydrogen bonds to the phosphoryl oxygens, whereas solvents such as DMSO are incapable of forming such bonds. It has been proposed that the loss of stabilization could result in a weakened P-OR ester bond, contributing to the observed faster rate of hydrolysis. Computational results support this notion. We have used the 18O-induced perturbation to the 31P chemical shift to ascertain whether solvent changes result in alterations to the P-O(R) bond. We have studied 16O18O-labeled methyl, ethyl, phenyl, p-nitrophenyl, diethyl p-nitrophenyl, triphenyl, and di-tert-butyl ethyl phosphate in the solvents water, methanol, chloroform, acetonitrile, dioxane, and DMSO. The results suggest no significant solvent-induced weakening of the phosphate ester bonds in any of the solvents tested, and this is unlikely to be a significant source for the acceleration of hydrolysis in mixed solvents.  相似文献   

5.
Phosphorothioate esters are phosphate esters in which one of the nonbridging oxygen atoms has been replaced by sulfur. In the comparative hydrolysis reactions of phosphorothioate and phosphate esters, the sulfur substitution accelerates the rates of the monoesters while slowing the rates of diesters and of triesters. Previously measured enthalpies and entropies of activation for the hydrolysis reactions of the monoesters, p-nitrophenyl phosphate and p-nitrophenyl phosphorothioate, were compared to the activation parameters measured herein for the diesters, ethyl p-nitrophenyl phosphate and ethyl p-nitrophenyl phosphorothioate, and the triesters, diethyl p-nitrophenyl phosphate and diethyl p-nitrophenyl phosphorothioate. A consistent trend of a greater DeltaH++ for the phosphorothioate analogue was found in all three classes of ester. In the monoester case, a more positive DeltaS++ arising from a mechanistic difference (D(N) + A(N) for the phosphorothioate versus A(N)D(N) for the phosphate) compensates, resulting in a lower DeltaG++ for the phosphorothioate monoester. Spectroscopic investigations indicate there is no significant difference in bond order to the leaving group in phosphates, as compared to their phosphorothioate analogues, ruling this out as a contribution to the consistently higher enthalpies of activation.  相似文献   

6.
We have used vibrational spectroscopy to study bonding in monosubstituted dianionic phosphates, both to learn more about basic properties intrinsic to this important class of biological substrates and to assess the ability of vibrational spectroscopy to provide a "sensor" or probe of the local environment experienced by the phosphoryl group. We examined the bonding properties of the phosphoryl group via vibrational spectroscopy for a series of compounds in which the phosphoryl substituent was varied systematically and extensively. A broad linear correlation of the bridging P-O(R) bond length and the pK(a) of the substituent alcohol was observed. The results indicate that the P-O(R) bond changes by only approximately 0.04 A with alcohol substituents that vary in pK(a) by approximately 12 units, suggesting that phosphoryl group bonding responds in a subtle but regular manner to changes in the local environment. We also determined the effect on the phosphoryl bonding from changes in the solvent environment. Addition of dimethyl sulfoxide (DMSO) elongates the bridging bond, presumably as a result of lessened solvation to the nonbridging oxygens and conservation of bond order to phosphorus. Finally, we have addressed the relationship between ground-state bonding properties and reactivity, as changing the leaving group substituent and adding DMSO have large rate effects, and it was previously proposed that lengthening of the bond to be broken is the cause of the increased reactivity. The results herein suggest, however, that the change in the bridging bond energy is small compared to the changes in energy that accompany the observed reactivity differences. Further analysis indicates that electrostatic interactions can provide a common driving force underlying both bond lengthening and the observed rate increases. We suggest that ground-state distortions of substrates bound to enzymes can provide a readout of the electrostatic active site environment, an environment that is otherwise difficult to assess.  相似文献   

7.
Previous work by Kirby and co-workers revealed a significant acceleration of the rate of hydrolysis of p-nitrophenyl phosphate by added dipolar solvents such as DMSO. Activation parameters and kinetic isotope effects have been measured to ascertain the origin of this effect. The generality of this phenomenon was examined with a series of esters with more basic leaving groups. Computational analyses of the effects of desolvation of dianionic phosphate monoesters were carried out, and the possible effect of the transfer from water to the active site of alkaline phosphatase was modeled. The results are consistent with a desolvation-induced weakening of the P-O ester bond in the ground state. Other aryl phosphate esters show similar rate accelerations at high fractions of DMSO, but phenyl and methyl phosphates do not, and their hydrolysis reactions are actually slowed by these conditions.  相似文献   

8.
Phosphorothioate esters are sometimes used as surrogates for phosphate ester substrates in studies of enzymatic phosphoryl transfer reactions. To gain better understanding of the comparative inherent chemistry of the two types of esters, we have measured equilibrium and kinetic isotope effects for several phosphorothioate esters of p-nitrophenol (pNPPT) and compared the results with data from phosphate esters. The primary (18)O isotope effect at the phenolic group ((18)k(bridge)), the secondary nitrogen-15 isotope effect ((15)k) in the nitro group, and (for the monoester and diester) the secondary oxygen-18 isotope effect ((18)k(nonbridge)) in the phosphoryl oxygens were measured. The equilibrium isotope effect (EIE) (18)k(nonbridge) for the deprotonation of the monoanion of pNPPT is 1.015 +/- 0.002, very similar to values previously reported for phosphate monoesters. The EIEs for complexation of Zn(2+) and Cd(2+) with the dianion pNPPT(2-) were both unity. The mechanism of the aqueous hydrolysis of the monoanion and dianion of pNPPT, the diester ethyl pNPPT, and the triester dimethyl pNPPT was probed using heavy atom kinetic isotope effects. The results were compared with the data reported for analogous phosphate monoester, diester, and triester reactions. The results suggest that leaving group bond fission in the transition state of reactions of the monoester pNPPT is more advanced than for its phosphate counterpart pNPP, while alkaline hydrolysis of the phosphorothioate diester and triester exhibits somewhat less advanced bond fission than that of their phosphate ester counterparts.  相似文献   

9.
The Zr(IV)-tetraphenylpor-phyrinates Zr(TPP)(X,X'), (X,X' = -OAc, -OMe, Cl ) 4-6, 8 were prepared and their complexing properties as well as catalytic properties towards solvolysis of the phosphate diesters hpp (2), dmp (3) and pmp (16) characterised. The diesters 2 and 16, representing model phosphates for RNA and DNA, were substrates for the catalyst Zr(TPP)Cl2 (4), and rate accelerations over background by 6-9 orders of magnitude were measured. These accelerations are comparable to those of dinuclear transition metal catalysts and lanthanide ions. Catalytic turnover was observed. Kinetic studies revealed that the catalytically active species of 4 in the solvolysis of 2 and 16 in methanol-containing solvents are dinuclear complexes containing either one or two phosphate esters depending upon the phosphate concentration. Besides the usual solvolysis pathway of the RNA model hpp (2), which proceeds via the cyclophosphate 20, a second, unusual pathway via direct substitution of the hydroxypropyl substituent was found. X-ray analysis of the Zr(TPP)(dmp) complex 19 revealed a dinuclear structure with two bridging dmp ligands and one monomethyl phosphate unit. In 19 one of the two dmp residues occurs in a very unusual high energy ac,ap conformation. Based on this structure and on the kinetic data, mechanistic models for the two solvolysis reaction pathways were developed. From an extensive CSD search on phosphodiester structures no correlation between P-O ester bond lengths and diester conformations could be found. However, P-O ester bonds decrease in length with increasing formal charge of the complexing metal ions. This underlines the higher importance of electrostatic activation relative to stereoelectronic effects in phosphodiester hydrolysis.  相似文献   

10.
Difference Raman and FTIR studies complemented by vibrational analysis based on ab initio calculations show that the dianionic phosphate in the PNP.ImmH.PO4 complex is forced into a unique bonding arrangement in which one of the PO bonds is greatly polarized by enzyme active site interactions, such that it resembles a PO bond that is about one-quarter of the way toward forming a bridging P-O-C single P-O bond.  相似文献   

11.
Hydrolytic reactions of 2',3'-O-methyleneadenosin-5'-yl bis-5'-O-methyluridin-3'-yl phosphate (1a) have been followed by RP HPLC over a wide pH range to elucidate the role of the 2'-OH group as an intermolecular hydrogen bond donor facilitating the cleavage of 1a. At pH < 2, where the decomposition of 1 is first-order in hydronium-ion concentration, the P-O5' and P-O3' bonds are cleaved equally rapidly. Over a relatively wide range from pH 2 to 4, the hydrolysis is pH-independent and the P-O5' bond is cleaved 1.6 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first-order in hydroxide-ion concentration and cleavage of the P-O3' bond starts to predominate, accounting for 89% of the overall hydrolysis in 10 mmol L(-)(1) aqueous sodium hydroxide. Under alkaline conditions, the 2'-OH group facilitates the cleavage of 1 by a factor of 27 compared to the 2'-OMe counterpart, the influence on the P-O3' and P-O5' bond cleavage being equal. Accordingly, the 2'-hydroxy group stabilizes the phosphorane intermediate, not the departing 3'-oxyanion, by hydrogen bonding.  相似文献   

12.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl 2',5'-di-O-methylurid-3'-yl 5'-O-methylurid-3'(2')-yl phosphate (1a,b) have been followed by RP-HPLC over a wide pH range to evaluate the feasibility of occurrence of phosphate-branched RNA under physiological conditions. At pH <2, where the decomposition of is first order in [H3O+], the P-O5' bond is cleaved 1.5 times as rapidly as the P-O3' bond. Under these conditions, the reaction probably proceeds by an attack of the 2'-OH on the phosphotriester monocation. Over a relatively wide range from pH 2 to 5, the hydrolysis is pH-independent, referring to rapid initial deprotonation of the attacking 2'-OH followed by general acid catalyzed departure of the leaving nucleoside. The P-O5' bond is cleaved 3 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first order in [HO-], consistent with an attack of the 2'-oxyanion on neutral phosphate. The product distribution is gradually inversed: in 10 mmol L(-1) aqueous sodium hydroxide, cleavage of the P-O3' bond is favored over P-O5' by a factor of 7.3. The results of the present study suggest that the half-life for the cleavage of under physiological conditions is only 100 s. Even at pH 2, where is most stable, the half-life for its cleavage is less than one hour and the isomerization between and is even more rapid than cleavage. The mechanisms of the partial reactions are discussed.  相似文献   

13.
The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.  相似文献   

14.
Phosphate activation in the ground state of purine nucleoside phosphorylase   总被引:2,自引:0,他引:2  
Phosphate and ribose 1-phosphate (R1P) bound to human purine nucleoside phosphorylase (PNP) have been studied by FTIR spectroscopy for comparison with phosphate bound with a transition state analogue. Bound phosphate is dianionic but exists in two distinct binding modes with similar binding affinities. The phosphate of bound R1P is also dianionic. Bound R1P slowly hydrolyzes to ribose and phosphate even in the absence of nucleobase. The C-OP bond is cleaved in bound R1P, the same as in the PNP-catalyzed reaction. Free R1P undergoes both C-OP and CO-P solvolysis. A hydrogen bond to one P-O group is stronger than those to the other two P-O groups in both the PNP.R1P complex and in one form of the PNP.PO4 complex. The average hydrogen bond strength to the PO bonds in the PNP.R1P complex is less than that in water but stronger than that in the PNP.PO4 complex. Hydrolysis of bound R1P may be initiated by distortion of the phosphate moiety in bound R1P. The unfavorable interactions on the phosphate moiety of bound R1P are relieved by dissociation of R1P from PNP or by hydrolysis to ribose and phosphate. The two forms of bound phosphate in the PNP.PO4 complex are interpreted to be phosphate positioned as the product in the nucleoside synthesis direction and as the reactant in the phosphorolysis reaction; their interconversion can occur by the transfer of a proton from one PO bond to another. The electronic structure of phosphate bound with a transition state analogue differs substantially from that in the Michaelis complexes.  相似文献   

15.
As benchmarks for judging the catalytic power of sulfate monoesterases, we sought to determine the rates of spontaneous hydrolysis of unactivated alkyl sulfate monoesters by S-O bond cleavage. Neopentyl sulfate proved to be unsuitable for this purpose, since it was found to undergo hydrolysis by a C-O bond cleaving mechanism with rearrangement of its carbon skeleton. Instead, we examined the temperature dependence of the spontaneous hydrolyses of aryl sulfate monoesters, which proceed by S-O cleavage. Extrapolation of a Bronsted plot [log(k(25)(N)) = (-1.81 ± 0.09) pK(a)(LG) + (3.6 ± 0.7)] based on the rate constants at 25 °C for hydrolysis of a series of sulfate monoesters to a pK(a)(LG) value of 16.1, typical of an aliphatic alcohol, yields k(25)(N) = 3 × 10(-26) s(-1). Comparison of that value with established k(cat) values of bacterial sulfatases indicates that these enzymes produce rate enhancements (k(cat)/k(uncat)) of up to 2 × 10(26)-fold for the hydrolysis of sulfate monoesters. These rate enhancements surpass by several orders of magnitude the ~10(21)-fold rate enhancements that are generated by phosphohydrolases, the most powerful biological catalysts previously known. The hydrolytic rates of phosphate and sulfate monoesters are compared directly, and the misleading impression that the two classes of ester are of similar reactivity is dispelled.  相似文献   

16.
Abstract

The hydrolysis of the title compounds was studied in order to investigate the possibility of their usage as drugs or pesticides. It was found that there were two different pathways of hydrolysis according to the pH region of the solution. In the acidic pH region, the P-N bond cleaves for the both compounds. In the basic pH region, the P-C and P-O bonds would cleave for the compound of N-(methoxycarbonyl-methoxyphosphonyl)-α-amino acid ester (I). While for the compound of N-(isopropylcarbamoyl-methoxyphosphony1)-α-amino acid ester (11). only the P-O bond cleaves. The possible mechanism is discussed.  相似文献   

17.
The hammerhead ribozyme is an RNA molecule capable of self-cleavage at a unique site within its sequence. Hydrolysis of this phosphodiester linkage has been proposed to occur via an in-line attack geometry for nucleophilic displacement by the 2'-hydroxyl on the adjoining phosphorus to generate a 2',3'-cyclic phosphate ester with elimination of the 5'-hydroxyl group, requiring a divalent metal ion under physiological conditions. The proposed S(N)2(P) reaction mechanism was investigated using density functional theory calculations incorporating the hybrid functional B3LYP to study this metal ion-dependent reaction with a tetraaquo magnesium (II)-bound hydroxide ion. For the Mg(2+)-catalyzed reaction, the gas-phase geometry optimized calculations predict two transition states with a kinetically insignificant, yet clearly defined, pentacoordinate intermediate. The first transition state located for the reaction is characterized by internal nucleophilic attack coupled to proton transfer. The second transition state, the rate-determining step, involves breaking of the exocyclic P-O bond where a metal-ligated water molecule assists in the departure of the leaving group. These calculations demonstrate that the reaction mechanism incorporating a single metal ion, serving as a Lewis acid, functions as a general base and can afford the necessary stabilization to the leaving group by orienting a water molecule for catalysis.  相似文献   

18.
DFT calculations and dielectric continuum methods have been employed to map out the lowest activation free-energy profiles for the alkaline hydrolysis of representative phosphate triesters and diesters, including trimethyl phosphate (TMP), dimethyl 4-nitrophenyl phosphate (DMNPP), dimethyl hydrogen phosphate (DMHP), and the dimethyl phosphate anion (DMP-). The reliability of the calculations is supported by the excellent agreement observed between the calculated and the experimentally determined activation enthalpies for phosphate triesters with poor (TMP) and good (DMNPP) leaving groups. The results obtained for the OH- + DMHP and OH- + DMP- reactions are also consistent with all the available experimental information concerning the hydrolysis reaction of dimethyl phosphate anion at pH > 5. By performing geometry optimizations in the dielectric field (epsilon = 78.39), we found that OH- can attack the phosphorus atom of DMHP without capturing its proton only if the O-H bond of DMHP is oriented opposite the attacking OH- group. In these conditions, the rate for OH- attack on DMHP was found to be approximately 10(3)-fold faster than that for OH- attack on TMP. The calculated rate acceleration induced by the phosphoryl proton corresponds to the maximum rate effect expected from kinetic studies. Overall, our calculations performed on the dimethyl phosphate ester predict that, contrary to what is generally observed for RNA and aryl phosphodiesters, the water-promoted P-O cleavage reaction of DNA should dominate the base-catalyzed reaction at pH 7. These results are suggestive that nucleases may be less proficient as catalysts than has recently been suspected.  相似文献   

19.
Hydrolysis of alkyl 1,8-naphthalic acid monoesters 1a-d is subject to highly efficient intramolecular nucleophilic catalysis by the neighboring COOH group. The reactivity for the COOH reaction depends on the leaving group pK(a), with values of β(LG) of -0.50, consistent with a mechanism involving rate determining breakdown of tetrahedral addition intermediates. The release of the steric strain of the peri-substitiuents in the highly reactive alkyl 1,8-naphthalic acid monoesters is fundamental to understand the observed special reactivity in this intramolecular reaction. DFT calculations show how the proton transfers involved in the cleavage of the neutral ester can be catalyzed by solvent water, thus facilitating the departure of poor alkoxide leaving groups.  相似文献   

20.
Hydrolytic reactions of guanosyl-(3',3')-uridine and guanosyl-(3',3')-(2',5'-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2'-hydroxyl group as a hydrogen-bond donor upon departure of the 3'-uridine moiety. Under neutral and basic conditions, guanosyl-(3',3')-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH(-)]) of the P-O3' bonds, giving uridine and guanosine 2',3'-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2'- and 3'-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3' bond of guanosyl-(3',3')-(2',5'-di-O-methyluridine) to yield 2',5'-O-dimethyluridine and guanosine 2',3'-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn(2+) on the cleavage of the P-O3' bonds of guanosyl-(3',3')-uridine is modest: about 6-fold acceleration was observed at [Zn(2+)] = 5 mmol L(-)(1) and pH 5.6. With guanosyl-(3',3')-(2',5'-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2'-hydroxyl group on the departure of the 3'-linked nucleoside, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号