首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a number of free radicals the results of non-empirical (ab initio) and semi-empirical (INDO, DEPAC, CNDO/SP) calculations of the isotropic hyperfine coupling constants are compared.  相似文献   

2.
3.
A complex procedure for quantitative allowance for small but significant effects of molecular orientation by strong static magnetic fields was elaborated. A series of high-resolution 1H NMR spectra of 1,2,3-trichloronaphthalene recorded at magnetic field strength varied over a wide range was analyzed in the framework of a unified approach with high accuracy. The spin-spin coupling constants and the dipole-dipole coupling constants for all pairs of 1H nuclei and the anisotropy and rhombicity parameters of the magnetic susceptibility tensor of the molecule were determined. Ab initio CSGT/RHF quantum chemical calculations of this property using a wide range of conventional diffuse and polarization basis set functions were carried out. Augmentation of the basis set with polarization functions affects the values of the calculated parameters to a lesser extent compared to augmentation with diffuse functions. The results of calculations using the 6-311G(df) and 6-311++G(df) basis sets are in good agreement with the experimental values of the magnetic susceptibility anisotropy for 1,2,3-trichloronaphthalene. The advantages of the method proposed and specific features of the effects of orientation by magnetic field as a new source of information on the structure of molecules in solution are discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1309–1317, August, 2006.  相似文献   

4.
The application of theoretical methods based on the density functional theory with hybrid functionals provides good estimates of the exchange coupling constants for polynuclear transition metal complexes. The accuracy is similar to that previously obtained for dinuclear compounds. We present test calculations on simple model systems based on H. He and CH(2). He units to compare with Hartree-Fock and multiconfigurational results. Calculations for complete, nonmodeled polynuclear transition metal complexes yield coupling constants in very good agreement with available experimental data.  相似文献   

5.
Two‐ and three‐bond coupling constants (2JHC and 3JHC) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)‐single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP‐HSQMBC and the direct 13C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3JHC. However, the DFT method under estimated the 2JHC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
MO calculations based on the finite perturbation theory in the INDO approximation have been carried out on selenophene, eighteen of its monosubstituted derivatives and benzo (b)selenophene. The calculated nuclear spin coupling constants satisfactorily reproduce signs, magnitudes, internal orders and some trends of the experimental values. Comparison of different ZDO calculations provides information on the relative importance of σ and π pathways for the various coupling constants in selenophene and benzo(b)selenophene. Unrestricted Hartree-Fock calculations at the INDO level have been performed on the radical anions of dibenzoselenophene and 2,1,3-benzoselenadiazole, the phenoselenazine radical cation, the phenoselenazine neutral radical and the phenoselenazine nitroxide. The isotropic hyperfine coupling constants have been found to be generally in satisfactory agreement with experiment.  相似文献   

7.
INDO-MO Calculations have been carried out on the anions of a variety of pyridine derivatives for which e.s.r. data have recently become available. The method gives reasonable results for proton hyperfine splitting constants but calculated nitrogen splitting constants are considerably larger than the experimental values. Some -only calculations are included for the pyridine anion. All methods overestimate the spin density at the nitrogen atom. The orbital populations and excess charges for the pyridine molecule are not in agreement with those of an ab initio calculation.  相似文献   

8.
Equilibrium geometries, force constants, barriers to linearity, charge distributions, dipole moments, and electron spin density of HOO, HOS, HSO, and HSS radicals are calculated by CNDO/2 and INDO methods using respectively the original and some recently introduced scheme of parametrization. Three sets of calculations, namely, CNDO/2(sp), CNDO/2(spd), and INDO, are performed, and the results are compared with the ab initio and experimental values, wherever available. A good agreement is obtained for geometry in the case of CNDO/2 (sp) and INDO calculations. The performance of CNDO/2 (spd) calculations in this regard is quite unreliable. The stretching force constants are considerably overestimated by all the methods, while the bending force constants are in reasonable agreement with the ab initio values. With respect to dipole moments, the CNDO/2 values are in better agreement with the ab initio results than the INDO values. In all the cases, the dipole moment vector directions are in complete disagreement with the ab initio predictions.  相似文献   

9.
The structural stabilities of endo and exo conformations of retronecine and heliotridine molecules were analyzed using different ab initio, semiempirical, and molecular mechanics methods. All electron and pseudopotential ab initio calculations at the Hartree-Fock level of theory with 6-31G* and CEP-31G* basis sets provided structures in excellent agreement with available experimental results obtained from X-ray crystal structure and 1H-NMR (nuclear magnetic resonance) studies in D2O solutions. The exo conformations showed a greater stability for both molecules. The most significant difference between the calculations was found in the ring planarity of heliotridine, whose distortion was associated with the interaction between the O(11)H group and the C(1)-C(2) double bond as well as with a hydrogen bond between O(11)H and N(4). The discrepancy between pseudopotential and all-electron optimized geometries was reduced after inclusion of the innermost electrons of C(1), C(2), and N(4) in the core potential calculation. The MNDO, AM1, and PM3 semiempirical results showed poor agreement with experimental data. The five-membered rings were observed to be planar for AM1 and MNDO calculations. The PM3 calculations for exo-retronecine showed a greater stability than the endo conformer, in agreement with ab initio results. A good agreement was observed between MM3 and ab initio geometries, with small differences probably due to hydrogen bonds. While exo-retronecine was calculated to be more stable than the endo conformer, the MM3 calculations suggested that endo-heliotridine was slightly more stable than the exo form. © 1996 by John Wiley & Sons, Inc.  相似文献   

10.
It is shown that non-convergent calculations of the Fermi contact term of spin-spin coupling constants within the self-consistent and finite perturbation schemes used to solve the coupled Hartree-Fock equations, are originated in non-singlet Hartree-Fock instabilities of the closed-shell restricted Hartree-Fock wavefunction. In CNDO/S and INDO/S wavefunctions, where the electronic system response has been successfully reproduced, all investigated molecules containing MOs were found to be unstable. Results of spin-spin coupling constants are given and compared with experimental as well as FP and SOS INDO values.Part of a Ph.D. thesis (G.E.S.) to be presented to the University of Buenos Aires.Comisión de Investigaciones Científicas (CIC, Pcia. de Bs. As.) fellow.  相似文献   

11.
Theinvestigationsofthemechanismsandkineticsofhydrocarbonpyrolysesplayakeyroleinelucidatingthepreparticlesootchemistryphase.Thethermalisomerizationsarealwaysinvolvedinthesepyrolysismechanisms.Inrecentyears,KernandSingh[1]andHidakaetal.[2,3]investigatedtheme…  相似文献   

12.
Summary Ab initio molecular orbital calculations of electron coupled nuclear spin-spin coupling constants are performed for CH4, SiH4, AlH 4 and GeH4 systems using the SCF perturbation theory. Basis set dependence of the major contributing terms such as orbital diamagnetic, orbital paramagnetic, spin dipolar and Fermi contact terms are studied. The study also illustrates the relative importance of bond centred functions and nuclear centred polarization functions in predicting the directly bonded and geminal couplings in the systems selected. Basis sets having uncontracted cores functions and augmented with bond functions seem to predict most of these couplings fairly satisfactorily when compared to the experimental values.  相似文献   

13.
Some nitrogen screening constants and their anisotropies are calculated within the CNDO/S level of approximation. Satisfactory agreement is found with available experimental data in most cases. In general the reported results are in closer agreement with experiment than are those found from ab initio calculations. The calculated data for the isoelectronic molecules N2O and CH2N2 would be in better agreement with experiment if the assignments of the two nitrogen nuclei were reversed in both cases. A reasonable correlation is obtained with some observed nitrogen chemical shifts. Contributions arising from electronic transitions are reported for N2, HCN, CH3CN, CH3NC, NO2+ and NO2?.  相似文献   

14.
The carbon–carbon indirect nuclear spin–spin coupling constants in cyclopropane, aziridine and oxirane were investigated by means of ab initio calculations at the RPA, SOPPA and DFT/B3LYP levels. We found that the carbon–carbon couplings are by far dominated by the Fermi contact term. Our best SOPPA and DFT results are in a very good agreement with each other and with the experimental values, whereas calculations at the RPA level of theory strongly overestimate the carbon–carbon couplings. Significant differences in the basis set dependence of the calculated carbon–carbon coupling constants obtained with either wavefunction method, RPA or SOPPA, or the density functional method, DFT/B3LYP, are observed. The SOPPA results depend much more strongly on the quality of the basis set than the results of DFT/B3LYP calculations. The medium‐sized core‐valence basis sets cc‐pCVTZ and even cc‐pCVDZ were found to perform fairly well at the SOPPA level for the one‐bond carbon–carbon couplings investigated here. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The Merck nematic mixture E49 exhibits a large nematic interval (0–100 °C) and a large dielectric anisotropy. Both of these features make E49 interesting for applications and basic physics. Unfortunately, no systematic measurements of the material constants of this mixture and their temperature dependence have been reported in the literature. In this paper we report experimental measurements of the splay and bend elastic constants (K 11 and K 33) of the ordinary and the extraordinary refractive indices (n ort and n par) at the wavelength λ?=?632.8 nm and of the two elastic constants parallel and orthogonal to the director (εpar and εort) at the frequency ν?=?5?kHz. The temperature dependence of all of these parameters is found in the temperature range 25–99 °C. The measurements of the elastic constants are performed using both a dielectric and an optical method simultaneously on the same nematic sample. The results obtained using the two methods are in a satisfactory agreement between them within the estimated experimental uncertainty. The ordinary and the extraordinary indices are measured using the prism method.  相似文献   

16.
High‐level ab initio calculations of carbon–carbon coupling constants were carried out in tetrahedrane, prismane and cubane using the SOPPA (Second‐Order Polarization Propagator Approach) computational scheme, in good agreement with available experimental data. It was found that SOPPA performs perfectly well in combination with Dunning's correlation‐consistent basis sets augmented with inner core functions; however, no improvement was observed on adding tight s‐functions. The utmost importance of electronic correlation effects decreasing the total values of computed J(C,C) in the title compounds by a factor of ~2.0–2.5 was found. Unknown values of J(C,C) in the title polyhedranes were predicted with high reliability and the latter were treated in terms of s‐characters of carbon–carbon bonds based on the additive scheme of coupling pathways. All three compounds under study showed decreased s‐characters of their carbon–carbon bonds, which is the result of their remarkable steric strain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Density functional calculations on “catch and release” complexes of C60 with corannulene derived molecular bowls show that computationally obtained 1H nuclear magnetic resonance (NMR) chemical shifts can be used as a reliable predictor of binding constants. A wide range of functionals was benchmarked against accurate ab initio calculations to ensure a credible representation of the weak forces that dominate the interactions in these systems. The most reliable density functional theory (DFT) results were then calibrated using experimentally observed NMR data. Careful analysis and comparison of a wide range of commonly used density functionals shows that the explicit inclusion of dispersion corrections is currently the only reliable way to accurately describe the systems investigated in our study. Moreover, we are able to show that the B97‐D and ωB97X‐D functionals are not only able to reproduce ab initio benchmark calculations, but they do so accurately with a moderately sized basis sets and without the problems of numerical integration we encountered with other functionals in this study. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
A systematic study of the one‐bond and long‐range J(C,C), J(C,H) and J(H,H) in the series of nine bicycloalkanes was performed at the SOPPA level with special emphasis on the coupling transmission mechanisms at bridgeheads. Many unknown couplings were predicted with high reliability. Further refinement of SOPPA computational scheme adjusted for better performance was carried out using bicyclo[1.1.1]pentane as a benchmark to investigate the influence of geometry, basis set and electronic correlation. The calculations performed demonstrated that classical ab initio SOPPA applied with the locally dense Dunning's sets augmented with inner core s‐functions used for coupled carbons and Sauer's sets augmented with tight s‐functions used for coupled hydrogens performs perfectly well in reproducing experimental values of different types of coupling constants (the estimated reliability is ca 1–2 Hz) in relatively large organic molecules of up to 11 carbon atoms. Additive coupling increments were derived for J(C,C), J(C,H) and J(H,H) based on the calculated values of coupling constants within SOPPA in the model bicycloalkanes, in reasonably good agreement with the known values obtained earlier on pure empirical grounds. Most of the bridgehead couplings in all but one bicycloalkane appeared to be essentially additive within ca 2–3 Hz while bicyclo[1.1.1]pentane demonstrated dramatic non‐additivity of ?14.5 Hz for J(C,C), +16.6 Hz for J(H,H) and ?5.5 Hz for J(C,H), in line with previous findings. Non‐additivity effects in the latter compound established at the SOPPA level should be attributed to the through‐space non‐bonded interactions at bridgeheads due to the essential overlapping of the bridgehead rear lobes which provides an additional and effective non‐bonding coupling path for the bridgehead carbons and their protons in the bicyclopentane framework. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Non-empirical finite perturbation calculations at the Hartree-Fock, multiconfigurational self-consistent field and configuration interaction levels of approximation are presented for the Fermi contact contribution in multiply-bonded molecules ethene, formimide, formaldehyde, ethyne and hydrogen cyanide. The finite perturbation-multiconfigurational SCF (FPMC) method (with few configurations) is free from the UHF triplet instabilities normally present in single configuration coupled Hartree-Fock (CHF) calculations of the Fermi contact (and spin-dipolar) contribution for π-bonded systems. The behaviour of coupling constants, calculated using FPMC for multiply-bonded systems parallels the behaviour of the CHF coupling constants in comparable systems with single bonds only. The effects of dynamic electron correlations are important and are obtained using the Cl method. After accounting for the orbital contribution by means of the single configuration CHF method, agreement with experiment is excellent for systems containing only carbon and hydrogen, when a double-zeta quality basis set is used. For systems containing nitrogen and oxygen agreement is still reasonable, but the use of larger basis sets seems to be necessary if good agreement with experiment is to be obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号