首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H2-NH(X) van der Waals complex has been examined using ab initio theory and detected via fluorescence excitation spectroscopy of the A(3)Pi-X(3)Sigma(-) transition. Electronic structure calculations show that the minimum energy geometry corresponds to collinear H2-NH(X), with a well depth of D(e)=116 cm(-1). The potential-energy surface supports a secondary minimum for a T-shaped geometry, where the H atom of NH points towards the middle of the H2 bond (C(2v) point group). For this geometry the well depth is 73 cm(-1). The laser excitation spectra for the complex show transitions to the H2+NH(A) dissociative continuum. The onset of the continuum establishes a binding energy of D(0)=32+/-2 cm(-1) for H2-NH(X). The fluorescence from bound levels of H2-NH(A) was not detected, most probably due to the rapid reactive decay [H2-NH(A)-->H+NH2]. The complex appears to be a promising candidate for studies of the photoinitiated H2+NH abstraction reaction under conditions were the reactants are prealigned by the van der Waals forces.  相似文献   

2.
The compound [NH4(NH3)4][B(C6H5)4].NH3 (1) was prepared by the reaction of NaB(C(6)H(5))(4) with a proton-charged ion-exchange resin in liquid ammonia. [NH(4)(NH(3))(4)][Ca(NH(3))(7)]As(3)S(6).2NH(3) (2) and [NH4(NH3)4][Ba(NH3)8]As3S6.NH3 (3) were synthesized by reduction of As(4)S(4) with Ca and Ba in liquid ammonia. All ammoniates were characterized by low-temperature single-crystal X-ray structure analysis. They were found to contain the ammine-ammonium complex with the maximal possible number of coordinating ammonia molecules, the [NH4(NH3)4]+ ion. 1 contains a special dimer, the [(NH4(NH3)4)2(mu-NH3)2]2+ ion, which is formed by two[NH4(NH3)4]+ ions linked by two ammonia molecules. The H(3)N-H...N hydrogen bonds in all three compounds range from 1.82 to 2.20 A (DHA = Donor-H...Acceptor angles: 156-178 degrees). In 2 and 3, additional H(2)N-H...S bonds to the thioanions are observed, ranging between 2.49 and 3.00 A (DHA angles: 120-175 degrees). Two parallel phenyl rings of the [B(C(6)H(5))(4)](-) anion in 1 form a pi...pi hydrogen bond (C...C distance, 3.38 A; DHA angles, 82 degrees), leading to a dimeric [B(C6H5)4]2(2-) ion.  相似文献   

3.
Hydrazine nitrosation of [Ru(NO)(py(si)S4)]Br.THF (1) (py(si)S4(2-) = 2,6-bis(3-triphenylsilyl-2-sulfanylphenylthiomethyl)pyridine2-) in methanol/DMF led to the formation of mononuclear ammine complex [Ru(NH3)(py(si)S4)] (2) and N2O, whereas the reaction performed in THF/CH2Cl2/toluene afforded thioether-bridged dinuclear ammine complex [(NH3)Ru(mu-py(si)S4)Ru(py(si)S4)] (3). Compound 2 dimerizes in solution at room temperature to form 3 and is regenerated upon treatment of 3 with NH3. A plausible mechanism for the hydrazine nitrosation of 1 has been proposed. The reaction of 1 with NH3 or N3- does not lead to a nucleophilic attack at the NO+ ligand but to a deprotonation that yields neutral nitrosyl complex [Ru(NO){py(si)S4(H+)}] (4), which is supported by density functional theory calculations.  相似文献   

4.
钴(II)-丁二酮肟-亚硝酸盐体系极谱催化波的机理研究   总被引:1,自引:0,他引:1  
倪亚明  李玲  高小霞 《化学学报》1988,46(7):651-656
在氨性底液(PH8)中, 钴(II)-丁二酮肟(DMG)-亚硝酸盐体系产生高灵敏的极谱催化波. 利用吸附伏安法, 测定下限可达1×10^-^1^1mol.dm^-^3Co. 我们用多种电化学方法和紫外可见分光光度法证明, 吸附在汞电极表面的[NH4]2[Co(DMG)2(NO2)2]是有很高电活性的混配化合物, 在复杂的电还原过程中, 不仅Co(II)和DMG被催化还原, 而且NO2^-也被催化还原, 从而产生很大的催化电流, 本文再一次证明, “活性钴"在催化波的形成过程中起着重要的作用.  相似文献   

5.
Recent computational studies on the addition of ammonia (NH3) to the Al3O3- cluster anion [A. Guevara-Garcia, A. Martinez, and J. V. Ortiz, J. Chem. Phys. 122, 214309 (2005)] have motivated experimental and additional computational studies, reported here. Al3O3- is observed to react with a single NH3 molecule to form the Al3O3NH3- ion in mass spectrometric studies. This is in contrast to similarly performed studies with water, in which the Al3O5H4- product was highly favored. However, the anion PE spectrum of the ammoniated species is very similar to that of Al3O4H2-. The adiabatic electron affinity of Al3O3NH3 is determined to be 2.35(5) eV. Based on comparison between the spectra and calculated electron affinities, it appears that NH3 adds dissociatively to Al3O3-, suggesting that the time for the Al3O3-NH3 complex to either overcome or tunnel through the barrier to proton transfer (which is higher for NH3 than for water) is short relative to the time for collisional cooling in the experiment.  相似文献   

6.
The parent amido complex cis-(PMe(3))(4)Ru(H)(NH(2)) (2) has been prepared via the deprotonation of [cis-(PMe(3))(4)Ru(H)(NH(3))(+)][BPh(4)(-)]. The amido complex is a somewhat weaker base than the DMPE analogue trans-(DMPE)(2)Ru(H)(NH(2)) but is still basic enough to quantitatively deprotonate fluorene and reversibly deprotonate 1,3-cyclohexadiene and toluene. Complex 2 exhibits very labile phosphine ligands, two of which can be replaced by DMPE to yield the mixed complex cis-(PMe(3))(2)(DMPE)Ru(H)(NH(2)). Because of the ligand lability, 2 also undergoes hydrogenolysis and rapid exchange with labeled NH(3). The amide complex reacts with alkyl halides to yield E2 and S(N)2 products, along with ruthenium hydrido halide complexes including the ruthenium fluoride cis-(PMe(3))(4)Ru(H)(F). Ruthenium hydrido ammonia halide ion pair intermediates [cis-(PMe(3))(4)Ru(H)(NH(3))(+)][X(-)] are observed in some deprotonation and E2 reactions, and measurement of the equilibrium constants for NH(3) displacement from these complexes suggests that they benefit from significant hydrogen bonding between X(-) and NH(3) groups. Cumulenes also react with complex 2 to afford the products of insertion into an NH bond. The rates of neither these NH insertion reactions nor the reversible deprotonation reactions show any dependence on the concentration of PMe(3) present, suggesting that these reactions take place directly at the NH(2) group and do not involve precoordination of substrate to the metal center.  相似文献   

7.
Nakajima A 《Talanta》2002,57(3):537-544
The persimmon tannin gel can adsorb vanadium highly effectively from aqueous solutions containing VOCl(2) and NH(4)VO(3), respectively. The adsorption of vanadium from the VOCl(2) solution had a broad maximum at around pH 5-6, while that from the NH(4)VO(3) solution, a sharp maximum at around pH 3.75 and a broad one at around pH 5-6. The adsorption of vanadium by the gel from both VOCl(2) and NH(4)VO(3) solutions was rapid, and was obeyed the Langmuir adsorption isotherm. The ESR spectrum of VO(2+) in the persimmon tannin gel showed a typical powder pattern with g-anisotropy and anisotropic hyperfine structure (I=7/2), with g(//)=1.937, g( perpendicular)=2.005, mid R:A(//)mid R:=552 MHz, and mid R:A( perpendicular)mid R:=168 MHz, suggesting a square pyramidal coordination structure of VO(2+)-persimmon tannin complex. The ESR analysis of vanadium adsorption from the NH(4)VO(3) solution (pH 6) indicated the reduction of VO(3)(-) to VO(2+). The high vanadium-adsorption ability of the persimmon tannin gel from the VOCl(2) solution was attributed to the stable complex formation of VO(2+) with catechol and pyrogallol groups in the gel, while the vanadium adsorption from the NH(4)VO(3) solution can be explained as the combination of H(3)VO(4) and VO(2+) adsorptions.  相似文献   

8.
A study of absorption spectra in the near-infrared (NIR) and visible (vis) regions of trinuclear Ru complexes containing pyrazine (pyz) as bridging ligand, trans-[(Ru(NH(3))(5)pyz)(2)Ru(NH(3))(4)](m+)(m = 6-9), is reported. The spectra were recorded on aqueous solutions containing the described species formed in situ by stoichiometric additions of a standard solution of Ce(SO(4))(2). They were interpreted in terms of a simple 5-orbital-3-parameter model which includes the effects of d-pi interaction and electronic correlation. The model is shown to account for the observed NIR-vis spectra of the complex ions. The 6+ parent species was synthesized by an improved literature method and fully characterized. The novel 8+ complex was also prepared and characterized. The 9+ ion was established to be slowly reduced by water, with dioxygen formation. Electrochemical (CV and DPV) studies were performed on the trinuclear 6+ complex, as well as on its constituent fragments [Ru(NH(3))(5)(pyz)](2+) and trans-[Ru(NH(3))(4)(pyz)(2)](2+).  相似文献   

9.
The course of methyl iodide oxidative addition to various nucleophilic complexes, [Ir2(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (1), [IrRh(mu-1,8-(NH)2naphth)(CO)2(PiPr3)2] (2), and [Rh2(mu-1,8-(NH)2naphth)(CO)2(PR3)2] (R = iPr, 3; Ph, 4; p-tolyl, 5; Me, 6), has been investigated. The CH3I addition to complex 1 readily affords the diiridium(II) complex [Ir2(mu-1,8-(NH)2naphth)I(CH3)(CO)2(PiPr3)2] (7), which undergoes slow rearrangement to give a thermodynamically stable stereoisomer, 8. The reaction of the Ir-Rh complex 2 gives the ionic compound [IrRh(mu-1,8-(NH)2naphth)(CH3)(CO)2(PiPr3)2]I (10). The dirhodium compounds, 3-5, undergo one-center additions to yield acyl complexes of the formula (Rh2(mu-1,8-(NH)2naphth)I(COCH3)(CO)(PR3)2] (R = iPr, 12; Ph, 13; p-tolyl, 14). The structure of 12 has been determined by X-ray diffraction. Further reactions of these Rh(III)-Rh(I) acyl derivatives with CH3I are productive only for the p-tolylphosphine derivative, which affords the bis-acyl complex [Rh2(mu-1,8-(NH)2naphth)(CH3CO)2I2(P(p-tolyl)3)2] (15). The reaction of the PMe3 derivative, 6, allows the isolation of the bis-methyl complex [Rh2(mu-1,8-(NH)2naphth)(mu-I)(CH3)2(CO)2(PMe3)2]I (16a), which emanates from a double one-center addition. Upon reaction with methyl triflate, the starting materials, 1, 2, 3, and 6, give the isostructural cationic methyl complexes 9, 11, 17, and 18, respectively. The behavior of these cationic methyl compounds toward CH3I, CH3OSO2CF3, and tetrabutylamonium iodide is consistent with the role of these species as intermediates in the SN2 addition of CH3I. Compounds 18 and 17 react with an excess of methyl triflate to give [Rh2(mu-1,8-(NH)2naphth)(mu-OSO2CF3)(CH3)2(CO)2(PMe3)2][CF3SO3] (19) and [Rh2(mu-1,8-(NH)2naphth)(OSO2CF3)(COCH3)(CH3)(CO)(PiPr3)2][CF3SO3] (20), respectively. Upon treatment with acetonitrile, complexes 17 and 18 give the isostructural cationic acyl complexes [Rh2(mu-1,8-(NH)2naphth)(COCH3)(NCCH3)(CO)(PR3)2][CF3SO3] (R = iPr, 21; Me, 22). A kinetic study of the reaction leading to 21 shows that formation of these complexes involves a slow insertion step followed by the fast coordination of the acetonitrile. The variety of reactions found in this system can be rationalized in terms of three alternative reaction pathways, which are determined by the effectiveness of the interactions between the two metal centers of the dinuclear complex and by the steric constraints due to the phosphine ligands.  相似文献   

10.
李南强  张力  高小霞 《化学学报》1983,41(4):351-358
In a supporting electrolyte containing 2X10-4M Alizarin Red S, 0.1M NH3-NH4Cl and at pH 9.6, we obtained an adsorptive complex wave of gadolinium-Alizarin Bed S by single-sweep polarography. The peak potential of the derivative wave is -0.69V (S. C. E.). The limit of detection for gadolinium is 6X10-8M. We have determined the composition of the complex which is 1:3 GD-Alizarin Red S and confirmed that the wave is an adsorptive complex wave. The electrode processes may be presented as follows: Gd3+ + 3HL2- + 3NH3 = (GdL3)6- + 3(NH4)^+ (Chemical reaction) (GdL3)6- = (GdL3)ad6- (Surface process) The total electrochemical reaction is (GdL3)ad6- + 6e + 6(NH4)^+ = (Gd(LH2)3)ad6- + 6NH3  相似文献   

11.
The ammonia complex of magnesium borohydride Mg(BH4)2.2NH3 (I), which contains 16.0 wt % hydrogen, is a potentially promising material for hydrogen storage. This complex was synthesized by thermal decomposition of a hexaaammine complex Mg(BH4)2.6NH3 (II), which crystallizes in the cubic space group Fm3 m with unit cell parameter a=10.82(1) A and is isostructural to Mg(NH3) 6Cl2. We solved the structure of I that crystallizes in the orthorhombic space group Pcab with unit cell parameters a=17.4872(4) A, b=9.4132(2) A, c=8.7304(2) A, and Z=8. This structure is built from individual pseudotetrahedral molecules Mg(BH4)2.2NH3 containing one bidentate BH4 group and one tridentate BH4 group that pack into a layered crystal structure mediated by N-H...H-B dihydrogen bonds. Complex I decomposes endothermically starting at 150 degrees C, with a maximum hydrogen release rate at 205 degrees C, which makes it competitive with ammonia borane BH 3NH3 as a hydrogen storage material.  相似文献   

12.
Vacuum ultraviolet (VUV) irradiation at wavelengths of lambda > 160 nm of urea-h4 (NH2CONH2) and urea-d4 (ND2COND2) has been monitored by Fourier transform infrared spectroscopy in argon and xenon matrixes. Several primary photoproducts, such as HNCO:NH3 (isocyanic acid:ammonia), CO:N2H4 (carbon monoxide:hydrazine) molecular complexes, and isourea (H2N(OH)C=NH), which is reported for the first time, were characterized. The assignment of complexes was achieved by co-depositing the pairs of respective species, whereas the isourea identification was based on the comparison between the experimental and theoretical (B3LYP) infrared spectra. Isourea is found in the argon matrix in its most stable (s-Z)-(E) configuration. It is an intermediate in the VUV decomposition process; its dehydration leads to the NH2CN:H2O complex. In the xenon matrix, the photochemistry of urea yields the HNCO:NH3 complex as a major product, whereas the CO:N2H4 complex is observed in trace amounts. The observed differences between the argon and xenon matrixes suggest the crossing between S1 and T1 potential surfaces of urea to be responsible for the formation of the HNCO:NH3 complex. A comparison is also performed with other carboxamides, such as formamide (HCONH2) or acetamide (CH3CONH2).  相似文献   

13.
Hydrocarbon-soluble model systems for the calcium-amidoborane-ammine complex Ca(NH(2)BH(3))(2)?(NH(3))(2) were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH(2)BH(3) (R = H, Me, iPr, DIPP; DIPP = 2,6-diisopropylphenyl) with Ca(DIPP-nacnac)(NH(2))?(NH(3))(2) (DIPP-nacnac = DIPP-NC(Me)CHC(Me)N-DIPP): Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(2), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(3), Ca(DIPP-nacnac)[NH(Me)BH(3)]?(NH(3))(2), Ca(DIPP-nacnac)[NH(iPr)BH(3)]?(NH(3))(2), and Ca(DIPP-nacnac)[NH(DIPP)BH(3)]?NH(3). The crystal structure of Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3)(3) showed a NH(2)BH(3)(-) unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)-2.39(4)??) that were mainly found between NH(3) ligands and BH(3) groups. In addition, there were N-H???C interactions between NH(3) ligands and the central carbon atom in the ligand. Solutions of these calcium-amidoborane-ammine complexes in benzene were heated stepwise to 60?°C and thermally decomposed. The following main conclusions can be drawn: 1)?Competing protonation of the DIPP-nacnac anion by NH(3) was observed; 2)?The NH(3) ligands were bound loosely to the Ca(2+) ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))](∞), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))?(THF), and [Ca(DIPP-nacnac){NH(iPr)BH(3)}](2) were obtained. 3)?Independent of the nature of the substituent R in NH(R)BH(3), the formation of H(2) was observed at around 50?°C. 4)?In all cases, the complex [Ca(DIPP-nacnac)(NH(2))](2) was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single-crystal analysis. We proposed that thermal decomposition of calcium-amidoborane-ammine complexes goes through an intermediate calcium-hydride-ammine complex which eliminates hydrogen and [Ca(DIPP-nacnac)(NH(2))](2). It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal-amidoborane-ammine complexes in the solid state.  相似文献   

14.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

15.
The cationic ruthenium hydride complex [(PCy(3))(2)(CO)(CH(3)CN)(2)RuH](+)BF(4)(-) was found to be a highly effective catalyst for the C-H bond activation reaction of arylamines and terminal alkynes. The regioselective catalytic synthesis of substituted quinoline and quinoxaline derivatives was achieved from the ortho-C-H bond activation reaction of arylamines and terminal alkynes by using the catalyst Ru(3)(CO)(12)/HBF(4).OEt(2). The normal isotope effect (k(CH)/k(CD) = 2.5) was observed for the reaction of C(6)H(5)NH(2) and C(6)D(5)NH(2) with propyne. A highly negative Hammett value (rho = -4.4) was obtained from the correlation of the relative rates from a series of meta-substituted anilines, m-XC(6)H(4)NH(2), with sigma(p) in the presence of Ru(3)(CO)(12)/HBF(4).OEt(2) (3 mol % Ru, 1:3 molar ratio). The deuterium labeling studies from the reactions of both indoline and acyclic arylamines with DCCPh showed that the alkyne C-H bond activation step is reversible. The crossover experiment from the reaction of 1-(2-amino-1-phenyl)pyrrole with DCCPh and HCCC(6)H(4)-p-OMe led to preferential deuterium incorporation to the phenyl-substituted quinoline product. A mechanism involving rate-determining ortho-C-H bond activation and intramolecular C-N bond formation steps via an unsaturated cationic ruthenium acetylide complex has been proposed.  相似文献   

16.
A new bridging ligand, 1-(4-cyanophenyl)imidazole (CPI) has been prepared, as well as its N-methylated derivative 1-methyl-3-(4-cyanophenyl)imidazolium iodide (CPI-Me(+)I(-)). The mononuclear and binuclear complexes [(NH(3))(5)Ru-CPI-Me](3+) and [(NH(3))(5)Ru-CPI-Ru(NH(3))(5)](4+) have been obtained. Free CPI is planar, according to theoretical calculations (MMX and MNDO), and its luminescence properties suggest the occurence of a twisted internal charge transfer (TICT) state. The comparison of the two ruthenium complexes reveals the spectral and electrochemical features of coordination by the cyanophenyl or by the imidazole groups. Controlled oxidation of the binuclear complex [(NH(3))(5)Ru-CPI-Ru(NH(3))(5)](4+) yields the mixed valence species [(NH(3))(5)Ru-CPI-Ru(NH(3))(5)](5+) in which the ruthenium coordinated to the cyanophenyl group is ruthenium(II) while the ruthenium linked to imidazole is ruthenium(III). An intervalence band is observed at 640 nm (epsilon = 188), from which the effective metal-metal coupling through the bridging ligand is determined as 0.032 eV. This value is satisfactorily reproduced by a theoretical calculation using the effective Hamiltonian theory. Finally the binuclear complex exhibits a weak luminescence when excited either on the ligand band near 260 nm or on the metal-to-ligand charge transfer band near 410 nm. The CPI ligand is the first example of a TICT-forming species with appreciable coupling between metallic sites and can be considered as a first step toward a molecular switch.  相似文献   

17.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

18.
A series of aluminium derivatives containing substituted bidentate and symmetrical tridentate pyrrolyl ligands, [C(4)H(3)NH(2-CH(2)NH(t)Bu)] and [C(4)H(2)NH(2,5-CH(2)NH(t)Bu)(2)], in toluene or diethyl ether were synthesized. Their reactivity and application for the ring opening polymerization of ε-caprolactone have been investigated. The reaction of AlMe(3) with one equiv. of [C(4)H(3)NH(2-CH(2)NH(t)Bu)] in toluene at room temperature affords [C(4)H(3)N(2-CH(2)NH(t)Bu)]AlMe(2) (1) in 70% yield by elimination of one equiv. of methane. Interestingly, while reacting AlMe(3) with one equiv. of [C(4)H(3)NH(2-CH(2)NH(t)Bu)] in toluene at 0 °C followed by refluxing at 100 °C, [{C(4)H(3)N(2-CH(2)N(t)Bu)}AlMe](2) (2) has been isolated via fractional recrystalliztion in 30% yield. Similarly, reacting AlMe(3) with two equiv. of C(4)H(3)NH(2-CH(2)NH(t)Bu) generates [C(4)H(3)N(2-CH(2)NH(t)Bu)](2)AlMe (3) in a moderate yield. Furthermore, complex 1 can be transformed to an aluminium alkoxide derivative, [C(4)H(3)N(2-CH(2)NH(t)Bu)][OC(6)H(2)(-2,6-(t)Bu(2)-4-Me)]AlMe (4) by reacting 1 with one equiv. of HOC(6)H(2)(-2,6-(t)Bu(2)-4-Me) in toluene via the elimination of one equiv. of methane. The reaction of AlR(3) with one equiv. of [C(4)H(2)NH(2,5-CH(2)NH(t)Bu)(2)] in toluene at room temperature affords [C(4)H(2)N(2,5-CH(2)NH(t)Bu)(2)]AlR(2) (5, R = Me; 6, R = Et) in moderate yield. Surprisingly, from the reaction of two equiv. of [C(4)H(2)NH(2,5-CH(2)NH(t)Bu)(2)] with LiAlH(4) in diethyl ether at 0 °C, a novel complex, [C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NH(t)Bu)](2)AlLi (7) has been isolated after repeating re-crystallization. Furthermore, reacting one equiv. of C(4)H(2)NH(2,5-CH(2)NH(t)Bu)(2) with AlH(3)·NMe(3) in diethyl ether generates an aluminium dihydride complex, [C(4)H(2)N(2,5-CH(2)NH(t)Bu)(2)]AlH(2) (8), in high yield. Additionally, treating 8 with one equiv. of HOC(6)H(2)(-2,6-(t)Bu(2)-4-Me) in methylene chloride produces [C(4)H(2)N(2,5-CH(2)NH(t)Bu)(2)][OC(6)H(2)(-2,6-(t)Bu(2)-4-Me)]AlH (9) with the elimination of one equiv. of H(2). The aluminium alkoxide complex 4 shows moderate reactivity toward the ring opening polymerization of ε-caprolatone in toluene.  相似文献   

19.
非经典三铂核药物与DNA作用的理论研究   总被引:3,自引:0,他引:3  
利用分子力学、分子动力学和量子化学等计算方法研究了新型临床二期抗癌药物BBR3464([{trans-PtCl(NH3)2}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]4+)与寡聚DNA片段复合物的几何构型及其电子结构. 结果表明, 利用分子力学和分子动力学确定的复合物结构与实验的基本吻合. BBR3464为+4价高电荷铂药, 与两端的铂相连的两个Cl配体间的距离是2.74 nm, 这使得药物与DNA交联速度快, 形成远程的1,4-链间交联. 计算结果表明, BBR3464与DNA识别能力强, 结合稳定. 所形成的复合物中既有Pt-N7间较强的配位键, 也存在许多氢键、弱氢键及静电作用. 复合物中结合位点及结合位点外的嘌呤碱基的构象发生了不同程度的改变. 复合物结构特征说明, DNA在键合药物后其构型并未发生定域的链弯曲, 而是离域的嘌呤碱基的构象转化, 其对DNA所造成离域性损伤与经典的药物不同. DNA是铂抗肿瘤药物的靶点, 多点键合和离域性损伤的结构特征与BBR3464的独特生物活性和临床表现相关.  相似文献   

20.
A binuclear vanadium complex NH4[(VO)22-O)(nta)2][Eu(H2O)9] was synthesized by reaction of NH3VO3, nitrilotriacetic acid and EuCl3 in one aqueous solution. The crystal X-ray analysis shows that the complex contains one binuclear vanadium anion [(VO)22-O)(nta)2]4- and one [Eu(H2O)9]3+ cation. The molecules are built up to a three-dimensional supramolecular structure through hydrogen bonding. CCDC: 238716.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号