首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We call a ring R a right SA-ring if for any ideals I and J of R there is an ideal K of R such that r(I) + r(J) = r(K). This class of rings is exactly the class of rings for which the lattice of right annihilator ideals is a sublattice of the lattice of ideals. The class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right selfinjective rings). This class is closed under direct products, full and upper triangular matrix rings, certain polynomial rings, and two-sided rings of quotients. The right SA-ring property is a Morita invariant. For a semiprime ring R, it is shown that R is a right SA-ring if and only if R is a quasi-Baer ring if and only if r(I) + r(J) = r(IJ) for all ideals I and J of R if and only if Spec(R) is extremally disconnected. Examples are provided to illustrate and delimit our results.  相似文献   

2.
3.
A ring R is said to be von Newmann local (VNL) if for any a ∈ R, either a or 1 ?a is (von Neumann) regular. The class of VNL rings lies properly between exchange rings and (von Neumann) regular rings. We characterize abelian VNL rings. We also characterize and classify arbitrary VNL rings without an infinite set of orthogonal idempotents; and also the VNL rings having a primitive idempotent e such that eRe is not a division ring. We prove that a semiperfect ring R is VNL if and only if for any right uni-modular row (a 1, a 2) ∈ R 2, one of the a i 's is regular in R. Formal triangular matrix rings that are VNL are also characterized. As a corollary, it is shown that an upper triangular matrix ring T n (R) is VNL if and only if n = 2 or 3 and R is a division ring.  相似文献   

4.
We observe that every non-commutative unital ring has at least three maximal commutative subrings. In particular, non-commutative rings (resp., finite non-commutative rings) in which there are exactly three (resp., four) maximal commutative subrings are characterized. If R has acc or dcc on its commutative subrings containing the center, whose intersection with the nontrivial summands is trivial, then R is Dedekind-finite. It is observed that every Artinian commutative ring R, is a finite intersection of some Artinian commutative subrings of a non-commutative ring, in each of which, R is a maximal subring. The intersection of maximal ideals of all the maximal commutative subrings in a non-commutative local ring R, is a maximal ideal in the center of R. A ring R with no nontrivial idempotents, is either a division ring or a right ue-ring (i.e., a ring with a unique proper essential right ideal) if and only if every maximal commutative subring of R is either a field or a ue-ring whose socle is the contraction of that of R. It is proved that a maximal commutative subring of a duo ue-ring with finite uniform dimension is a finite direct product of rings, all of which are fields, except possibly one, which is a local ring whose unique maximal ideal is of square zero. Analogues of Jordan-Hölder Theorem (resp., of the existence of the Loewy chain for Artinian modules) is proved for rings with acc and dcc (resp., with dcc) on commutative subrings containing the center. A semiprime ring R has only finitely many maximal commutative subrings if and only if R has a maximal commutative subring of finite index. Infinite prime rings have infinitely many maximal commutative subrings.  相似文献   

5.
The article examines the role of Gabriel filters of ideals in the ontext of semiprime f-rings. It is shown that for every 2-convex semiprime f-ring Aand every multiplicative filter B of dense ideals the ring of quotients of A by B, namely the direct limit of the Hom A (I, A) over all I∈ B, is an l-subring of QA, the maximum ring of quotients. Relative to the category of all commutative rings with identity, it is shown that for every 2-convex semiprime f-ring A qA, the classical ring of quotients, is the largest flat epimorphic extension of A. If Ais also a Prüfer ring then it follows that every extension of Ain qA is of the form S -1A for a suitable multiplicative subset S. The paper also examines when a Utumi ring of quotients of a semiprime f-ring is obtained from a Gabriel filter. For a ring of continuous functions C(X), with Xcompact, this is so for each C(U) and C *(U), when Uis dense open, but not for an arbitrary direct limit of C(U),taken over a filter base of dense open sets. In conclusion, it is shown that, for a complemented semiprime f-ring A, the ideals of Awhich are torsion radicals with respect to some hereditary torsion theory are precisely the intersections of minimal prime ideals of A.  相似文献   

6.
In this note we continue to study zero divisors in power series rings and polynomial rings over general noncommutative rings. We first construct Armendariz rings which are not power-serieswise Armendariz, and find various properties of (power-serieswise) Armendariz rings. We show that for a semiprime power-serieswise Armendariz (so reduced) ring R with a.c.c. on annihilator ideals, R[[x]] (the power series ring with an indeterminate x over R) has finitely many minimal prime ideals, say B 1,…,B m , such that B 1B m  = 0 and B i  = A i [[x]] for some minimal prime ideal A i of R for all i, where A 1,…,A m are all minimal prime ideals of R. We also prove that the power-serieswise Armendarizness is preserved by the polynomial ring extension as the Armendarizness, and construct various types of (power-serieswise) Armendariz rings.  相似文献   

7.
An ideal Iin a commutative ring Ris called a z°-ideal if Iconsists of zero-divisors and for each a? Ithe intersection of all minimal prime ideals containing ais contained in I.We prove that in a large class of rings, containing Noetherian reduced rings, Zero-dimensional rings, polynomials over reduced rings and C(X), every ideal consisting of zero-divisors is contained in a prime z°-ideal. It is also shown that the classical ring of quotients of a reduced ring is regular if and only if every prime z°-ideal is a minimal prime ideal and the annihilator of a f.g. ideal consisting of zero-divisors is nonzero. We observe that z°-ideals behave nicely under contractions and extensions.  相似文献   

8.
Graded rings and essential ideals   总被引:1,自引:0,他引:1  
LetG be a group andA aG-graded ring. A (graded) idealI ofA is (graded) essential ifIJ≠0 wheneverJ is a nonzero (graded) ideal ofA. In this paper we study the relationship between graded essential ideals ofA, essential ideals of the identity componentA e and essential ideals of the smash productA#G *. We apply our results to prime essential rings, irredundant subdirect sums and essentially nilpotent rings.  相似文献   

9.
Let A be a commutative integral domain that is a finitely generated algebra over a field k of characteristic 0 and let ø be a k-algebra automorphism of A of finite order m. In this note we study the ring D(A;ø of differential operators introduced by A.D. Bell. We prove that if A is a free module over the fixed sub-ring A ø, with a basis containing 1, then D(A;ø) is isomorphic to the matrix ring Mm(D(A ø). It follows from Grothendieck's Generic Flatness Theorem that for an arbitrary A there is an element c?Asuch that D(A[c-1];ø)?M m(D(A[c-1]ø)). As an application, we consider the structure of D(A;ø)when A is a polynomial or Laurent polynomial ring over k and ø is a diagonalizable linear automorphism.  相似文献   

10.
M. Ebrahimpour 《代数通讯》2013,41(9):3861-3875
Let R be a commutative ring with identity. We say that a proper ideal P of R is (n ? 1, n)-weakly prime (n ≥ 2) if 0 ≠ a 1a n  ∈ P implies a 1a i?1 a i+1a n  ∈ P for some i ∈ {1,…, n}, where a 1,…, a n  ∈ R. In this article, we study (n ? 1, n)-weakly prime ideals. A number of results concerning (n ? 1, n)-weakly prime ideals and examples of (n ? 1, n)-weakly prime ideals are given. Rings with the property that for a positive integer n such that 2 ≤ n ≤ 5, every proper ideal is (n ? 1, n)-weakly prime are characterized. Moreover, it is shown that in some rings, nonzero (n ? 1, n)-weakly prime ideals and (n ? 1, n)-prime ideals coincide.  相似文献   

11.
A ringR is said to be a left (right)n-distributive multiplication ring, n>1 a positive integer, if aa1a2...an=aa1aa2...aan (a1a2...ana=a1aa2a...ana) for all a, a1,...,an R. It will be shown that the semi-primitive left (right)n-distributive rings are precisely the generalized boolean ringsA satisfying an=a for all a A. An arbitrary left (right)n-distributive multiplication ring will be seen to be an extension of a nilpotent ringN satisfyingN n+1=0 by a generalized boolean ring described above. Under certain circumstances it will be shown that this extension splits.  相似文献   

12.
M. Ebrahimpour 《代数通讯》2013,41(4):1268-1279
Let R be a commutative ring with identity. Let φ: S(R) → S(R) ∪ {?} be a function, where S(R) is the set of ideals of R. Suppose n ≥ 2 is a positive integer. A nonzero proper ideal I of R is called (n ? 1, n) ? φ-prime if, whenever a 1, a 2, ?, a n  ∈ R and a 1 a 2?a n  ∈ I?φ(I), the product of (n ? 1) of the a i 's is in I. In this article, we study (n ? 1, n) ? φ-prime ideals (n ≥ 2). A number of results concerning (n ? 1, n) ? φ-prime ideals and examples of (n ? 1, n) ? φ-prime ideals are also given. Finally, rings with the property that for some φ, every proper ideal is (n ? 1, n) ? φ-prime, are characterized.  相似文献   

13.
《代数通讯》2013,41(3):727-736
Abstract

We consider the class of all commutative reduced rings for which there exists a finite subset T ? A such that all projections on quotients by prime ideals of A are surjective when restricted to T. A complete structure theorem is given for this class of rings,and it is studied its relation with other finiteness conditions on the quotients of a ring over its prime ideals.  相似文献   

14.
Let A=K[x 1,…,x n ] be a polynomial ring over a field K and M a monomial ideal of A. The quotient ring R=A/M is said to be Macaulay-Lex if every Hilbert function of a homogeneous ideal of R is attained by a lex ideal. In this paper, we introduce some new Macaulay-Lex rings and study the Betti numbers of lex ideals of those rings. In particular, we prove a refinement of the Frankl–Füredi–Kalai Theorem which characterizes the face vectors of colored complexes. Additionally, we disprove a conjecture of Mermin and Peeva that lex-plus-M ideals have maximal Betti numbers when A/M is Macaulay-Lex.  相似文献   

15.
Let AR be an extension of commutative rings with 1. We show that A is totally real (i.e. all maximal ideals of A are real) and AR is a Prüfer extension if and only if R is totally real and the holomorphy ring H(R/A) of R over A is A. Received: 2 January 2001 / Revised version: 23 April 2001  相似文献   

16.
We extend two well-known results on primitive ideals in enveloping algebras of semisimple Lie algebras, the Irreducibility theorem for associated varieties and Duflo theorem on primitive ideals, to much wider classes of algebras. Our general version of the Irreducibility Theorem says that if A is a positively filtered associative algebra such that gr A is a commutative Poisson algebra with finitely many symplectic leaves, then the associated variety of any primitive ideal in A is the closure of a single connected symplectic leaf. Our general version of the Duflo theorem says that if A is an algebra with a triangular structure, see § 2, then any primitive ideal in A is the annihilator of a simple highest weight module. Applications to symplectic reflection algebras and Cherednik algebras are discussed.  相似文献   

17.
We characterize right Noetherian rings over which all simple modules are almost injective. It is proved that R is such a ring, if and only if, the complements of semisimple submodules of every R-module M are direct summands of M, if and only if, R is a finite direct sum of right ideals Ir, where Ir is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2. A commutative Noetherian ring for which all simple modules are almost injective is precisely a finite direct product of rings Ri, where Ri is either a field or a quasi-Frobenius ring of length 2. We show that for commutative rings whose all simple modules are almost injective, the properties of Kasch, (semi)perfect, semilocal, quasi-Frobenius, Artinian, and Noetherian coincide.  相似文献   

18.
This paper generalizes the duality between polynomial modules and their inverse systems (Macaulay), behaviors (Willems) or zero sets of arrays or multi-sequences from the known case of base fields to that of commutative quasi-Frobenius (QF) base rings or even to QF-modules over arbitrary commutative Artinian rings. The latter generalization was inspired by the work of Nechaev et al. who studied linear recurring arrays over QF-rings and modules. Such a duality can be and has been suggestively interpreted as a Nullstellensatz for polynomial ideals or modules. We also give an algorithmic characterization of principal systems. We use these results to define and characterize n-dimensional cyclic codes and their dual codes over QF rings for n>1. If the base ring is an Artinian principal ideal ring and hence QF, we give a sufficient condition on the codeword lengths so that each such code is generated by just one codeword. Our result is the n-dimensional extension of the results by Calderbank and Sloane, Kanwar and Lopez-Permouth, Z. X. Wan, and Norton and Salagean for n=1.  相似文献   

19.
A ring is called commutative transitive if commutativity is a transitive relation on its nonzero elements. Likewise, it is weakly commutative transitive (wCT) if commutativity is a transitive relation on its noncentral elements. The main topic of this paper is to describe the structure of finite wCT rings. It is shown that every such ring is a direct sum of an indecomposable noncommutative wCT ring of prime power order, and a commutative ring. Furthermore, finite indecomposable wCT rings are either two-by-two matrices over fields, local rings, or basic rings with two maximal ideals. We characterize finite local rings as generalized skew polynomial rings over coefficient Galois rings; the associated automorphisms of the Galois ring give rise to a signature of the local ring. These are then used to further describe the structure of finite local and wCT basic rings.  相似文献   

20.
Jian Cui 《代数通讯》2013,41(12):4471-4482
An element a of a ring R is called J-quasipolar if there exists p 2 = p ∈ R satisfying p ∈ comm2(a) and a + p ∈ J(R); R is called J-quasipolar in case each of its elements is J-quasipolar. The class of this sort of rings lies properly between the class of uniquely clean rings and the class of quasipolar rings. In particular, every J-quasipolar element in a ring is quasipolar. It is shown, in this paper, that a ring R is J-quasipolar iff R/J(R) is boolean and R is quasipolar. For a local ring R, we prove that every n × n upper triangular matrix ring over R is J-quasipolar iff R is uniquely bleached and R/J(R) ? ?2. Moreover, it is proved that any matrix ring of size greater than 1 is never J-quasipolar. Consequently, we determine when a 2 × 2 matrix over a commutative local ring is J-quasipolar. A criterion in terms of solvability of the characteristic equation is obtained for such a matrix to be J-quasipolar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号