首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noether-like operators play an essential role in writing down the first integrals for Euler-Lagrange systems of ordinary differential equations (ODEs). The classification of such operators is carried out with the help of analytic continuation of Lagrangians on the line. We obtain the classification of 5, 6 and 9 Noether-like operators for two-dimensional Lagrangian systems that arise from the submaximal and maximal dimensional Noether point symmetry classification of Lagrangians on the line. Cases in which the Noether-like operators are also Noether point symmetries for the systems of two ODEs are mentioned. In particular, the 8-dimensional maximal Noether algebra is remarkably obtained for the simplest system of the free particle equations in two dimensions from the 5-dimensional complex Noether algebra of the standard Lagrangian of the scalar free particle equation. We present the effectiveness of Noether-like operators for the determination of first integrals of systems of two nonlinear differential equations which arise from scalar complex Euler-Lagrange ODEs that admit Noether symmetry.  相似文献   

2.
C Masood Khalique  Pauline Ntsime 《PAMM》2007,7(1):2030049-2030050
We classify all Noether point symmetries of the Lane-Emden-type equation x y ″ + n y ′ + xνf (y) = 0 with respect to the standard Lagrangian L = 1/2 xny2xn +ν –1f (y)dy for various functions f (y). We then obtain first integrals of the various cases which admit Noether point symmetries and obtain reduction to quadratures for these cases. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper aims to perform Noether symmetry classification of a generalized coupled bidimensional Lane–Emden system and computes the Noether operators corresponding to its first-order Lagrangian. In addition conservation laws of the various cases which admit Noether point symmetries are constructed for the underlying system.  相似文献   

4.
We study a generalized coupled inhomogeneous Emden–Fowler system from the Lagrangian formulation standpoint. A special case of this system was considered in the literature, and necessary and sufficient conditions for the existence of multiple positive solutions were obtained. Here we perform preliminary Noether classification of the generalized system by the direct method. We obtain nine cases for which the system has Noether point symmetries. First integrals are then obtained for the cases which admit Noether point symmetries.  相似文献   

5.
Symmetries of the first integrals for scalar linear or linearizable secondorder ordinary di?erential equations (ODEs) have already been derived and shown to exhibit interesting properties. One of these is that the symmetry algebra sl(3, IR) is generated by the three triplets of symmetries of the functionally independent first integrals and its quotient. In this paper, we first investigate the Lie-like operators of the basic first integrals for the linearizable maximally symmetric system of two second-order ODEs represented by the free particle system, obtainable from a complex scalar free particle equation, by splitting the corresponding complex basic first integrals and its quotient as well as their associated symmetries. It is proved that the 14 Lie-like operators corresponding to the complex split of the symmetries of the functionally independent first integrals I1, I2 and their quotient I2/I1 are precisely the Lie-like operators corresponding to the complex split of the symmetries of the scalar free particle equation in the complex domain. Then, it is shown that there are distinguished four symmetries of each of the four basic integrals and their quotients of the two-dimensional free particle system which constitute four-dimensional Lie algebras which are isomorphic to each other and generate the full symmetry algebra sl(4, IR) of the free particle system. It is further shown that the (n + 2)-dimensional algebras of the n + 2 first integrals of the system of n free particle equations are isomorphic to each other and generate the full symmetry algebra sl(n + 2, IR) of the free particle system.  相似文献   

6.
7.
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.  相似文献   

8.
We obtain a complete group classification of the Lie point symmetries of nonlinear Poisson equations on generic (pseudo) Riemannian manifolds M. Using this result we study their Noether symmetries and establish the respective conservation laws. It is shown that the projection of the Lie point symmetries on M are special subgroups of the conformal group of M. In particular, if the scalar curvature of M vanishes, the projection on M of the Lie point symmetry group of the Poisson equation with critical nonlinearity is the conformal group of the manifold. We illustrate our results by applying them to the Thurston geometries.  相似文献   

9.
Abstract

The equations for the Lie point symmetries of autonomous systems of second order linear ordinary differential equations are derived. The results for a two dimensional system are treated in detail and some consideration is extended to higher dimensional systems. The effect of the introduction of time-dependent elements into the coefficient matrix is briefly discussed.  相似文献   

10.
We show how Noether conservation laws can be obtained from the particle relabelling symmetries in the Euler–Poincaré theory of ideal fluids with advected quantities. All calculations can be performed without Lagrangian variables, by using the Eulerian vector fields that generate the symmetries, and we identify the time-evolution equation that these vector fields satisfy. When advected quantities (such as advected scalars or densities) are present, there is an additional constraint that the vector fields must leave the advected quantities invariant. We show that if this constraint is satisfied initially then it will be satisfied for all times. We then show how to solve these constraint equations in various examples to obtain evolution equations from the conservation laws. We also discuss some fluid conservation laws in the Euler–Poincaré theory that do not arise from Noether symmetries, and explain the relationship between the conservation laws obtained here, and the Kelvin–Noether theorem given in Sect. 4 of Holm et al. (Adv. Math. 137:1–81, 1998).  相似文献   

11.
A demonstration of how the point symmetries of the Chazy equation become nonlocal symmetries for the reduced equation is discussed. Moreover we construct an equivalent third-order differential equation which is related to the Chazy equation under a generalized transformation, and find the point symmetries of the Chazy equation are generalized symmetries for the new equation. With the use of singularity analysis and a simple coordinate transformation we construct a solution for the Chazy equation which is given by a right Painlevé series. The singularity analysis is applied to the new third-order equation and we find that it admits two solutions, one given by a left Painlevé series and one given by a right Painlevé series where the leading-order behaviors and the resonances are explicitly those of the Chazy equation.  相似文献   

12.
Invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. The reductions carry all the advantages regarding Noether symmetries and double reductions via first integrals or conserved quantities. The examples we consider are nonlinear evolution type equations like the general form of the Fizhugh–Nagumo and KdV–Burgers equations. Some aspects of Painlevé properties of the reduced equations are also obtained.  相似文献   

13.
The classical quantization of a family of a quadratic Liénard-type equation (Liénard II equation) is achieved by a quantization scheme (Nucci 2011) [28] that preserves the Noether point symmetries of the underlying Lagrangian in order to construct the Schrödinger equation. This method straightforwardly yields the Schrödinger equation as given in Choudhury and Guha (2013) [6].  相似文献   

14.
We study the existence and branching patterns of wave trains in a two-dimensional lattice with linear and nonlinear coupling between nearest particles and a nonlinear substrate potential. The wave train equation of the corresponding discrete nonlinear equation is formulated as an advanced-delay differential equation which is reduced by a Lyapunov–Schmidt reduction to a finite-dimensional bifurcation equation with certain symmetries and an inherited Hamiltonian structure. By means of invariant theory and singularity theory, we obtain the small amplitude solutions in the Hamiltonian system near equilibria in non-resonance and p:qp:q resonance, respectively. We show the impact of the direction θ of propagation and obtain the existence and branching patterns of wave trains in a one-dimensional lattice by investigating the existence of traveling waves of the original two-dimensional lattice in the direction θ of propagation satisfying tan θ is rational.  相似文献   

15.
The Airy stress function, although frequently employed in classical linear elasticity, does not receive similar usage for granular media problems. For plane strain quasi-static deformations of a cohesionless Coulomb-Mohr granular solid, a single nonlinear partial differential equation is formulated for the Airy stress function by combining the equilibrium equations with the yield condition. This has certain advantages from the usual approach, in which two stress invariants and a stress angle are introduced, and a system of two partial differential equations is needed to describe the flow. In the present study, the symmetry analysis of differential equations is utilised for our single partial differential equation, and by computing an optimal system of one-dimensional Lie algebras, a complete set of group-invariant solutions is derived. By this it is meant that any group-invariant solution of the governing partial differential equation (provided it can be derived via the classical symmetries method) may be obtained as a member of this set by a suitable group transformation. For general values of the parameters (angle of internal friction ? and gravity g) it is found there are three distinct classes of solutions which correspond to granular flows considered previously in the literature. For the two limiting cases of high angle of internal friction and zero gravity, the governing partial differential equation admit larger families of Lie point symmetries, and from these symmetries, further solutions are derived, many of which are new. Furthermore, the majority of these solutions are exact, which is rare for granular flow, especially in the case of gravity driven flows.  相似文献   

16.
The complete symmetry group of an 1+1 evolution equation of maximal symmetry has been demonstrated to be represented by the six-dimensional Lie algebra of point symmetries sl(2,R)sW, where W is the three-dimensional Heisenberg-Weyl algebra. We construct a complete symmetry group of a 1+2 evolution equation ut=(Fy(u)ux) for some functions F using the point symmetries admitted by the equation. The 1+2 equation is not completely specifiable by point symmetries alone for some specific functions F. We make use of Ansätze already reported by Myeni and Leach [S.M. Myeni, P.G.L. Leach, Nonlocal symmetries and complete symmetry groups of evolution equations, J. Nonlinear Math. Phys. 13 (2006) 377-392] which provide a route to the determination of the required generic nonlocal symmetries necessary to supplement the point symmetries for the complete specification of these 1+2 evolution equations. Further we find that taking some suitable linear combination of Lie point symmetries helps to optimise the procedure of specifying the equation. A general result concerning the number of symmetries required to form a complete symmetry group of evolution is presented in the Conclusion.  相似文献   

17.
We study higher-order conservation laws of the nonlinearizable elliptic Poisson equation as elements of the characteristic cohomology of the associated exterior differential system. The theory of characteristic cohomology determines a normal form for differentiated conservation laws by realizing them as elements of the kernel of a linear differential operator. We show that the \mathbbS1{\mathbb{S}^1} -symmetry of the PDE leads to a normal form for the undifferentiated conservation laws. Zhiber and Shabat (in Sov Phys Dokl Akad 24(8):607–609, 1979) determine which potentials of nonlinearizable Poisson equations admit nontrivial Lie–B?cklund transformations. In the case that such transformations exist, they introduce a pseudo-differential operator that can be used to generate infinitely many such transformations. We obtain similar results using the theory of characteristic cohomology: we show that for higher-order conservation laws to exist, it is necessary that the potential satisfies a linear second-order ODE. In this case, at most two new conservation laws in normal form appear at each even prolongation. By using a recursion motivated by Killing fields, we show that, for the simplest class of potentials, this upper bound is attained. The recursion circumvents the use of pseudo-differential operators. We relate higher-order conservation laws to generalized symmetries of the exterior differential system by identifying their generating functions. This Noether correspondence provides the connection between conservation laws and the canonical Jacobi fields of Pinkall and Sterling.  相似文献   

18.
《Quaestiones Mathematicae》2013,36(1):101-113
Abstract

Yesl Any equation of conservation of the form ?x{P(?xφ, ?tφ) = ?t{Q(?xφ, ?tφ) is shown to admit an infinite-dimensional, Abellan group of symmetries that is not a prolongation symmetry group. Explicit equations are given for the determination of the generators of the Lle algebra of this Abellan symmetry group, and for the generators of Its underlying Poisson algebra.  相似文献   

19.
Classifications of symmetries and conservation laws are presented for a variety of physically and analytically interesting wave equations with power nonlinearities in n spatial dimensions: a radial hyperbolic equation, a radial Schrödinger equation and its derivative variant, and two proposed radial generalizations of modified Korteweg-de Vries equations, as well as Hamiltonian variants. The mains results classify all admitted local point symmetries and all admitted local conserved densities depending on up to first order spatial derivatives, including any that exist only for special powers or dimensions. All such cases for which these wave equations admit, in particular, dilational energies or conformal energies and inversion symmetries are determined. In addition, potential systems arising from the classified conservation laws are used to determine nonlocal symmetries and nonlocal conserved quantities admitted by these equations. As illustrative applications, a discussion is given of energy norms, conserved Hs norms, critical powers for blow-up solutions, and one-dimensional optimal symmetry groups for invariant solutions.  相似文献   

20.
In this research article, a complete analysis of symmetries and conservation laws for the charged squashed Kaluza–Klein black hole space‐time in a Riemannian space is discussed. First, a comprehensive group analysis of the underlying space‐time metric using Lie point symmetries is presented, and then the n‐dimensional optimal system of this space‐time metric, for n = 1,…,4, are computed. It is shown that there is no any n‐dimensional optimal system of Lie symmetry subalgebra associated to the system of geodesic for n≥5. Then the point symmetries of the one‐parameter Lie groups of transformations that leave invariant the action integral corresponding to the Lagrangian that means Noether symmetries are found, and then the conservation laws associated to the system of geodesic equations are calculated via Noether's theorem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号