首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

2.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

3.
ZnS nanoparticles with Mn2+ doping (0.5-20%) have been prepared through a simple chemical method, namely the chemical precipitation method. The structure of the nanoparticles has been analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV-vis spectrometer. The size of the particles is found to be 3-5 nm range. Photoluminescence spectra were recorded for undoped ZnS nanoparticles using an excitation wavelength of 320 nm, exhibiting an emission peak centered at around 445 nm. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+4T1-6A1 transition is observed along with the blue emission. The prepared Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission 580 nm with the blue emission suppressed. The maximum PL intensity is observed only at the excitation energy of 3.88 eV (320 nm). Increase in stabilizing time up to 48 h in de-ionized water yields the enhancement of emission intensity of doped (4% Mn2+) ZnS. The correlation made through the concentration of Mn2+ versus PL intensity resulted in opposite trend (mirror image) of blue and yellow emissions.  相似文献   

4.
Nanometer-sized Eu3+-doped ZnS and Mn2+-doped ZnS particles were prepared by solid-state method at low temperature. The structures and properties of those materials were characterized by X-ray diffraction (XRD) and photoluminescent spectroscopy techniques. The XRD patterns reveal that the doped ZnS nanoparticles belong to zinc-blende structure. The concentration of doping ions has little effect on the sizes of the doped ZnS nanoparticles, which mainly depends on the temperature of preparation. The emission peaks from the 5D07FJ (J=1, 2, and 4) electronic energy transitions of Eu3+ were observed in the emission spectra of the ZnS:Eu3+ nanoparticles. The intensity ratio of the two peaks from the 5D07F1 and 5D07F2 transitions indicates that more Eu3+ ions occupy the sites with no inversion symmetry. For the ZnS:Mn2+ nanoparticles, an orange emission from the 4T16A1 transition of Mn2+ is present, indicating that the doping ions occupy the positions of the ZnS lattices. Meanwhile, UV-induced luminescence enhancement was observed for the ZnS:Mn2+ nanoparticles, the possible reason of which is discussed primarily.  相似文献   

5.
Zn1−XMnXS (X=0.85% and 1.26%) nanoparticles have been synthesized using a specially designed equipment and we have studied the influence of doping Mn2+ on the surface energy of ZnS. The high pressure behaviors of ZnS nanocrystals with different dopant contents have been investigated using angle-dispersive synchrotron X-ray powder diffraction up to 45.1 GPa. Theoretical calculations show that doping with Mn2+ increases the surface energy of the nanocrystals. The theoretical result has been further corroborated by our experimental observation of an increase in the phase transition pressure of Mn2+ doped ZnS nanocrystals in diamond-anvil-cell studies.  相似文献   

6.
ZnS nanoparticles with Mn2+ doping (1–2.5%) have been prepared through a simple soft chemical route, namely the chemical precipitation method. The nanostructures of the prepared undoped ZnS and Mn2+-doped ZnS:Mn nanoparticles have been analyzed using X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–vis spectrophotometer. The size of the particles is found to be in 2–3 nm range. Room-temperature photoluminescence (PL) spectrum of the undoped sample only exhibits a blue-light emission peaked at ∼365 nm under UV excitation. However, from the Mn2+-doped samples, a yellow-orange emission from the Mn2+ 4T16A1 transition is observed along with the blue emission. The prepared 2.5% Mn2+-doped sample shows efficient emission of yellow-orange light with the peak emission at ∼580 nm with the blue emission suppressed.  相似文献   

7.
The water-soluble Mn2+-doped ZnS quantum dots (Mn:ZnS d-dots) were synthesized by using thioglycolic acid (TGA) as stabilizer in aqueous solutions in air, and characterized by X-ray powder diffraction (XRD), UV-vis absorption spectra and photoluminescence (PL) emission spectroscopy. The sizes of Mn:ZnS d-dots were determined to be about 2 nm using XRD measurements and the UV-vis absorption spectra. It was found that the Mn2+4T1 → 6A1 emission intensity of Mn:ZnS d-dots significantly increased with the increase of Mn2+ concentration, and showed a maximum when Mn2+ doping content was 1.5%. If Mn2+ concentration continued to increase, namely more than 1.5%, the Mn2+4T1 → 6A1 emission intensity would decrease. In addition, the effects of TGA/(Zn + Mn) molar ratio on PL were investigated. It was found that the peak intensity ratio of Mn2+4T1 → 6A1 emission to defect-states emission showed a maximum when the TGA/(Zn + Mn) molar ratio was equal to 1.8.  相似文献   

8.
Mn2+-doped ZnS nanoparticles of average size 2.5±0.3 nm have been studied and characterized in the dopant concentration range 0.1–0.3% using XRD, EPR, XPS and photoluminescence methods. The experimental results obtained from these studies indicate that the doping of Mn2+ occurs primarily at the T d sites at low dopant concentration, causing the4T1(G) → 6A1(S) transition to take place in the host lattice; the observed decrease in the intensity of photoluminescence at high dopant concentration is due to the setting in of the strong Mn2+–Mn2+ interaction arising from cluster formation at the highly distorted sites near the particle surface.An erratum to this article can be found at  相似文献   

9.
In this work we synthesized ZnS:Mn2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission at 594 nm due to the 4T1-6A1 transition in Mn2+. The PL intensity increased with increase in the Mn2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10−8 cm2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10−3 cm/W with positive sign.  相似文献   

10.
Mn2+-doped Zn2SiO4 phosphors had been prepared by hydrothermal method in stainless-steel autoclaves. Effects of synthesized methods, reaction temperature, ambience of heat treatment on the structure and the luminescence properties of this silicate were studied with X-ray diffraction apparatus (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and fluorescence spectrum. Results show that Zn2SiO4 nanocrystalline can be obtained by hydrothermal method at relatively low temperatures. The absorption pattern shows an absorption edge at about 380 nm originated from ZnO crystals and two absorption bands at about 215 and 260 nm. Mn2+-doped Zn2SiO4 has a luminescence band with the wavelength at about 522 nm under 255 nm excitation, and the luminescent intensity increases after being heat treated.  相似文献   

11.
EPR studies have been carried out in Mn2+-doped single crystals of [M(H2O)6]SnF6 (M  Zn, Co) at different temperatures using X-band microwave frequency. Mn2+ has been found to substitute for Zn2+ or Co2+ exhibiting a unique magnetic complex with z-axis directed long the c-axis of the crystals. Observation of resolved Mn2+ spectrum in [Co(H2O)6]SnF6 and broadening of the resonance lines on cooling the crystals have been explained on the basis of host spin-lattice relaxation narrowing. The T1 of Co2+ has been estimated to be ≈ 1.8 × 10−12 s at 293 K.  相似文献   

12.
《Composite Interfaces》2013,20(2):75-84
ZnS:Cd nanoparticles were synthesized in a reverse micelle system by controlling reaction factors with mercaptoacetic acid (MPA) as a surfactant and N,N-dimethylformamide as an oil phase. X-ray diffraction pattern shows that the ZnS:Cd nanoparticles exhibit a cubic structure and its mean size is calculated around 4 nm. With different molar ratios of Zn2+/S2?, the relative intensity of the emission peaks at 400 and 556 nm changes dramatically due to the more sulfur vacancies which resulted from the imbalance of Zn2+ and S2+ ions. Furthermore, hydrophobic phase-transferred ZnS:Cd nanoparticles were obtained using octylamine, and a highly luminescent phase-transferred ZnS:Cd/polyvinylpyrrolidone (PVP) nanocomposite was prepared by blending the phase-transferred ZnS:Cd with PVP. Infrared absorption suggests that octylamine has been successfully connected with the MPA-coated ZnS:Cd nanoparticles. Unlike the MPA-coated ZnS:Cd which has a very strong emission at 556 nm, the phase-transferred ZnS:Cd has a strong emission at 435 nm, which is ascribed to surface passivation and electron redistribution. In addition, luminescent intensity enhancement was observed for the phase-transferred ZnS:Cd/PVP nanocomposites with various Cd2+ doping concentrations.  相似文献   

13.
CdS:Mn2+/ZnS and CdS:Mn2+/CdS core–shell nanoparticles were synthesized in aqueous medium via chemical precipitation method in an ambient atmosphere. Polyvinylpyrrolidone (PVP) was used as a capping agent. The effect of the shell (ZnS and CdS) thickness on CdS:Mn2+ nanoparticles was investigated. Inorganically passivated core/shell nanocrystals having a core (CdS:Mn2+) diameter of 4 nm and a ZnS-shell thickness of ∼0.5 nm exhibited improved PL intensity. Optimum concentration of doping ions (Mn2+) was selected through optical study. For all the core–shell samples two emission peaks were observed, the first one is band edge emission in the lower wavelength side due to energy transfer to the Mn2+ ions in the crystal lattice; the second emission is characteristic peak of Mn2+ ions (4T1 → 6A1). The XRD, TEM and PL results showed that the synthesized core–shell particles were of high quality and monodisperse.  相似文献   

14.
The compositional, structural, optical and magnetic properties of ZnS, Zn0.98Co0.02S, Zn0.98Sm0.02S and Zn0.96Co0.02Sm0.02S nanoparticles synthesized by a hydrothermal method are presented and discussed. X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) studies revealed that all the samples exhibited cubic structure without any impurity phases. X-ray photoelectron spectroscopy (XPS) results revealed that the Co and Sm ions existed in +2 and +3 states in these samples. The photoluminescence (PL) spectra of all the samples exhibited a broad emission in the visible region. The room temperature magnetization versus applied magnetic field (MH) curves demonstrated that the Sm+Co doped nanoparticles exhibited enhanced ferromagnetic behavior compare to Co and Sm individually doped ZnS nanoparticles, which is probably due to the exchange interaction between conductive electrons with local spin polarized electrons on the Co2+ or Sm3+ ions. This study intensifies the understanding of the novel performances of co-doped ZnS nanoparticles and also provides possibilities to fabricate future spintronic devices.  相似文献   

15.
Luminescence kinetics and time-resolved luminescence spectra of SiO2, SiO2 doped with ZnS:Mn2+ nanocrystals and SiO2 doped with ZnS:Mn2+, and additionally co-doped with Tb3+, are presented. The purposes of the paper are the analysis of the kinetics of the Tb3+ and Mn2+ intra-shell luminescence and the elucidation of the energy-transfer mechanism between the ZnS:Mn2+ nanocrystals and the Tb3+ ions. We have found a blue luminescence related to defects in the ZnS nanocrystals and an intrinsic luminescence of the SiO2 lattice, which decays in few ns. A yellow luminescence related to the Mn2+ 4T1(G)→6A1 transition and yellow sharp lines related to the 5D47F6, 7F5, 7F4 and 7F3 transitions in Tb3+ are found to decay in ms. A very effective energy transfer between ZnS:Mn2+ nanoparticles and Tb3+ ions has been observed.  相似文献   

16.
ZnS and SiO2-ZnS nanophosphors, with or without different concentration of Mn2+ activator ions, were synthesized by using a sol-gel method. Dried gels were annealed at 600 °C for 2 h. Structure, morphology and particle sizes of the samples were determined by using X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The diffraction peaks associated with the zincblende and the wurtzite structures of ZnS were detected from as prepared ZnS powders and additional diffraction peaks associated with ZnO were detected from the annealed powders. The particle sizes of the ZnS powders were shown to increase from 3 to 50 nm when the powders were annealed at 600 °C. An UV-Vis spectrophotometer and a 325 nm He-Cd laser were used to investigate luminescent properties of the samples in air at room temperature. The bandgap of ZnS nanoparticles estimated from the UV-Vis data was 4.1 eV. Enhanced orange photoluminescence (PL) associated with 4T16A1 transitions of Mn2+ was observed from as prepared ZnS:Mn2+and SiO2-ZnS:Mn2+ powders at 600 nm when the concentration of Mn2+ was varied from 2-20 mol%. This emission was suppressed when the powders were annealed at 600 °C resulting in two emission peaks at 450 and 560 nm, which can be ascribed to defects emission in SiO2 and ZnO respectively. The mechanism of light emission from Mn2+, the effect of varying the concentration on the PL intensity, and the effect of annealing are discussed.  相似文献   

17.
V K Jain  T M Srinivasan 《Pramana》1978,10(2):155-162
The electron paramagnetic resonance of Mn2+ and Gd3+ doped in Pr2Zn3(NO3)12.24H2O single crystals has been studied at X-band. Mn2+ substitutes for two Zn2+ sites, while Gd3+ substitutes for single type of Pr3+ sites. The spin-Hamiltonian analysis of the EPR spectra is presented at 298 K as well as 77 K.  相似文献   

18.
Igarashi  T.  Ihara  M.  Kusunoki  T.  Ohno  K.  Isobe  T.  Senna  M. 《Journal of nanoparticle research》2001,3(1):51-56
Coordination states of Mn2+ inside and near the surface of ZnS:Mn nanocrystal (NC) (ca. 1.8 nm in particle radius) coated with poly(acrylic acid) (PAA) were examined by the detailed analysis of electron paramagnetic resonance (EPR). The symmetry of both Mn2+ sites inside and near the surface of NC is lower than that of submicron particles (0.125 m in particle radius), because of larger lattice distortion and larger zero field splitting constant. Temperature dependence of line width ( H pp) of EPR signals from Mn2+ inside and near surface sites of ZnS:Mn disappears when the particle radius of ZnS:Mn decreases from 0.125 m to 1.8 nm. These indicate increasing extent of d–d transition and stronger interaction between Mn2+ and ZnS as well as between Mn2+ and PAA in NC, leading to more effective energy transfer from ZnS and PAA to Mn2+. These phenomena explain the high luminescence intensity of ZnS:Mn nanocrystal coated with PAA.  相似文献   

19.
Condensation product (L) of salicylaldehyde and semicarbazide behaves as a fluorescent sensor for Cd2+ ion, in 1:1 DMSO:H2O, over Mn2+, Fe2+, Ni2+, Co2+, Cu2+, Pb2+ and Hg2+ ions. The emission peak of L at λmax = 520 nm, on excitation with 420 nm wavelength photons, showed an enhancement in intensity of ca 60-fold when interacted with Cd2+ ion. The intensity was however found to remain unaltered when interacted with metal ions—Mn2+, Fe2+, Ni2+, Co2+, Cu2+, Pb2+ and Hg2+. The intensity increases by approximately 20 fold on interaction with Zn2+ ion. The increase in the fluorescent peak can be explained on the basis of photo induced electron transfer (PET) mechanism. A 1:1 complexation between Cd2+ and L with log β = 4.25 has been proved.  相似文献   

20.
The present commercial phosphor Zn2SiO4:Mn2+ requires further improvement because of its long decay time. In this work, the co-doping effects of Ba2+ and Ti4+ upon emission intensity and decay time were investigated. Ba2+ and Ti4+ cations have favorable influences on the photoluminescent properties. When doped with appropriate amount of Ba2+, the intensity of green emission was increased 12% and the decay time was shortened 18%. When doped with appropriate amount of Ti4+, the luminescence intensity was enhanced a little, and the decay time was shortened 14%. Ba2+ and Ti4+ were co-doped in Zn2SiO4:Mn2+ system, the luminescence intensity was enhanced 18%, and the decay time was shortened sharply (about 31%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号