首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chain transfer constants were obtained for styrene, methyl methacrylate, methyl acrylate and vinyl acetate, polymerized in methyl oleate and methyl stearate at 60°C. Transfer constants increased in the order: methyl methacrylate < styrene < methyl acrylate ? vinyl acetate in both solvents. Average values of the transfer parameters were: for methyl oleate, Qtr = 2.04 × 10?4, etr = 1.08; for methyl stearate, Qtr = 0.373 × 10?4, etr = 1.01. Indication that polar species predominate in the transition state is supported by the observed order of reactivity. The usual rate dependence appeared to be followed by all of the monomers except vinyl acetate, which was retarded, severely in methyl oleate. Transfer in methyl oleate was about 5.8 times greater than that found in methyl stearate for these four monomers. The internal allylic double bond of methyl oleate had about the same reactivity in transfer as had the terminal unsaturation in N-allylstearamide at 90°C. Rough estimates were obtained of the monomer transfer constants for the long side-chain homologs of these four monomers from the respective monomer transfer constants and the experimental transfer constants, corrected for transfer to the labile groups of the solvent. It was concluded that the rate of polymerization would determine in large measure the degree of polymerization for the reactive 18-carbon homologs but that the molecular weight of poly(vinyl stearate) and (oleate) will be regulated primarily by transfer to monomer.  相似文献   

2.
The polymerization of vinyl monomers with various xanthates (potassium tert-butylxanthate, potassium benzylxanthate, zinc n-butylxanthate, etc.) were carried out at 0°C in dimethylformamide. N-Phenylmaleimide, acrylonitrile, methyl vinyl ketone, and methyl methacrylate were found to undergo polymerization with potassium tert-butylxanthate; however, styrene, methyl acrylate, and acrylamide were not polymerized with this xanthate. In the anionic polymerization of methyl vinyl ketone with potassium tert-butylxanthate, the rate of the polymerization was found to be proportional to the catalyst concentration and to the square of the monomer concentration. The activation energy of methyl vinyl ketone polymerization was 2.9 kcal/mole. In the polymerization, the order of monomer reactivity was as follows: N-phenylmaleimide > methyl vinyl ketone > acrylonitrile > methyl methacrylate. The initiation ability of xanthates increased with increasing basicity of the alkoxide group and with decreasing electronegativity of the metal ion in the series, lithium, sodium, and potassium tert-butylxanthate. The relative effects of the aprotic polar solvents on the reactivity of potassium tert-butylxanthate was also determined as follows: diethylene glycol dimethyl ether > dimethylsulfoxide > hexamethylphosphoramide > dimethylformamide > tetrahydrofuran (for methyl vinyl ketone); dimethyl sulfoxide > hexamethylphosphoramide > dimethylformamide ? diethylene glycol dimethyl ether (for acrylonitrile).  相似文献   

3.
Apparent transfer constants have been determined for styrene, methyl methacrylate vinyl acetate, and diethyl maleate polymerized in N-allylstearamide at 90°C. Regression coefficients for transfer were: methyl methacrylate, 0.301 × 10?3; styrene, with no added initiator, 0.582 × 10?3; styrene, initiated with benzoyl peroxide, 0.830 × 10?3; vinyl acetate, 62.01 × 10?3; and diethyl maleate, 2.24 × 10?3. Rates of polymerization were retarded for both styrene and methyl methacrylate. Vinyl monomer and comonomer disappearance followed an increasing exponential dependence on both initiator and monomer concentration. Although degradative chain transfer probably caused most of the retardation, the cross-termination effect was not eliminated as a contribution factor. Rates for the vinyl acetate copolymerization were somewhat retarded, even though initiator consumption was large because of induced decomposition. The kinetic and transfer data indicated that the reactive monomers added radicals readily, but that rates were lowered by degradative chain transfer. Growing chains were terminated at only moderate rates of transfer. Unreactive monomers added radicals less easily, producing reactive radicals, which transferred rapidly, so that molecular weights were lowered precipitously. Although induced initiator decomposition occurred, rates were still retarded by degradative chain transfer. A simple empirical relation was found between the reciprocal number-average degree of polymerization, 1/X?n1 and the mole fraction of allylic comonomer entering the copolymer F2, which permitted estimation of the molecular weight of copolymers of vinyl monomers with allylic comonomers. This equation should be applicable when monomer transfer constants for each homopolymer are known and when osmometric molecular weights of one or two copolymers of low allylic content have been determined.  相似文献   

4.
The radical polymerization of vinyl monomers initiated by Cr2+–RX in the presence of various amines was studied in DMF at 30°C. Polyamines able to form the chelate complex with Cr2+ accelerated the rate of polymerization of styrene in the following order: ethanolamine > triethylenetetramine > diethylenetriamine > ethylenediamine. However, aliphatic monoamine, hexamethylenediamine, and aromatic diamine did not have any effect on the polymerization. These results suggest that the effect of multidentate ligands may be associated with chelating effects which affect the electron transfer ability of the metal complex. An apparent activation energy of 8.2 kcal/mole for the polymerization of styrene was obtained in the presence of ethanolamine. With the Cr2+–CHCl3 system, on addition of ethanolamine, the polymerization of methyl methacrylate was accelerated, and acrylonitrile and vinyl chloride, could be polymerized.  相似文献   

5.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

6.
Abstract

A study of the polymerization of styrene, methyl methacrylate, acrylonitrile, vinyl acetate, and vinyl chloride initiated by various metal acetylacetonates [Me(acac)x] has been made. It was found that Mn(acac)3 was the most effective initiator, and Co(acac)3, Mn(acac)2, Cu(acac)2, and Cr(acac)3 showed moderate activity for the polymerization of methyl methacrylate at 60°C. However, the other, Me(acac)x, had no effect or served as inhibitors. The addition of some additives such as halogen compounds did not accelerate polymerization of methyl methacrylate by Mn(acac)3, From the results of polymerization and copolymerization of methyl methacrylate by Mn(acac)3, it was concluded that the polymerization proceeded via an ordinary radical mechanism and the activation energy for initiation was 25.2 kcal/mole. The initiation mechanism of vinyl polymerization by Me(acac)x was studied on the basis of the complex formation with the monomer.  相似文献   

7.
Ferrocenylmethyl acrylate (I) and ferrocenylmethyl methacrylate (II) have been readily copolymerized with maleic anhydride in benzene–ethyl acetate solutions. Similarly, II has been copolymerized with both acrylonitrile and N-vinyl-2-pyrrolidone in benzene solutions to give higher molecular weight copolymers in high yields. In all cases azobisisobutyronitrile has been the initiator. Based on e values obtained, the metal carbonyl substituent acts as an electron-withdrawing group. Over a wide range of comonomers (N-vinyl-2-pyrrolidone, styrene, vinyl acetate, methyl acrylate, acrylonitrile, and maleic anhydride) I and II exhibit r1 values lower than (and r2 values higher than) similar copolymerizations with methyl acrylate or methyl methacrylate. Further more, the Q values found for I (0.03–0.11) and II (0.08–0.18) are smaller than those for methyl acrylate (0.46) and methyl methacrylate (0.74). Thus, I and II are less reactive than expected, presumably due to steric effects.  相似文献   

8.
A study of the polymerization of vinyl monomers with binary systems of tertiary amines and various organic halides containing chemical bonds such as C? Cl, N? Cl, O? Cl, S? Cl, and Si? Cl has been made at 60°C. Some of the binary systems were found to be effective as radical initiator in the polymerization of methyl methacrylate. The relative initiating activities of the halides in the presence of dimethylaniline were found to be in the following order: tert-C4H9OCl > n-C4H9NCl2 > (n-C4H9)2NCl ? CH3SiCl3 ? C6H5SiCl3 > C6H5SO2Cl > C6H5Cl > C6H5PCl2. Styrene and vinyl acetate polymerized only with the initiator system of dimethylaniline and benzyl chloride. Tri-n-butylamine was less active than dimethylaniline. Pyridine and 4-vinylpyridine, in combination with some organic halides, also initiated the polymerization of methyl methacrylate. The N-vinylcarbazole–benzenesulfonyl chloride system, in the presence of methyl methacrylate, gave only the homopolymer of N-vinylcarbazole.  相似文献   

9.
The results of quantitative studies of the rates of free-radical polymerization of vinyl ferrocene indicate that the latter has polymerization characteristics similar to those of styrene. The rates of homopolymerization of these two monomers in benzene at 70°C. were measured with the use of azobisisobutyronitrile as catalyst. The rate constants (k = Rp/[M][I]1/2) are kVF = (1.1 ? 1.8) × 10?4, kSTY = 1.65 × 10?4. Small amounts of vinyl ferrocene and styrene have similar effects on the rates of polymerizations of methyl methacrylate and ethyl acrylate and on the molecular weights of the resulting polymer. Polystyrene and poly(vinyl ferrocene) with similar molecular weights are isolated from polymerizations carried out under identical conditions. The rates of copolymerization of vinyl ferrocene—methyl methacrylate, vinyl ferrocene—styrene, and styrene—methyl methacrylate were determined by following the disappearance of monomers by means of gas chromatographic analyses. The relative reactivity for vinyl ferrocene is slightly lower than that for styrene.  相似文献   

10.
The polymerizations of methyl methacrylate, styrene, and isobutyl vinyl ether with the binary systems of reduced nickel and chlorosilanes [(CH3)nSiCl4?n, n = 0–3] have been investigated. It was found that these systems could act as both radical and cationic initiators, depending on the nature of vinyl monomers used. The kinetic investigations indicated that methyl methacrylate polymerized via a radical mechanism, and the initiating activity of chlorosilanes decreased in the following order: SiCl4 > CH3SiCl3 > (CH3)2SiCl2 > (CH3)3SiCl ? 0. Cationic initiations were observed in the polymerizations of styrene and isobutyl vinyl ether. In the latter case, the activity of chlorosilanes was in the following order: (CH3)3SiCl > (CH3)2SiCl2 > CH3SiCl3 ? SiCl4. From the results obtained, a possible mechanism of selective initiation with these systems is proposed and discussed.  相似文献   

11.
The polymerization of vinyl monomers (N-phenylmaleimide, acrylamide, acrylonitrile, methyl vinyl ketone, methyl methacrylate, vinyl chloride, and styrene) with sodium salts of Brønsted acids (sodium cyanide, sodium nitrite, sodium hydroxide, etc.) were investigated at 0°C in dimethylformamide. N-Phenylmaleimide, acrylonitrile, and methyl vinyl ketone were found to undergo polymerization with sodium cyanide, however the other monomers were not polymerized with this salt. In the polymerizations of acrylonitrile and N-phenylmaleimide with sodium cyanide, the rates of the polymerizations were found to be proportinal to the initiator concentration and to the square of the monomer concentration. The activation energy of acrylonitrile polymerization was 3.7 kcal/mole, and that of N-phenylmaleimide ws 3.0 kcal/mole. The results of the copolymerization of acrylonitrile with methyl methacrylate at 0°C in dimethyl-formamide with sodium cyanide confirm that these polymerizations proceeded by an anionic mechanism initiated by the Michael addition reaction of the monomers with the salts. In these polymerizations, the monomer reactivity increased with increase in the e values. The initiation ability of sodium salts increased with increasing pKa of the conjugate acids and with decreasing electronegativity of metal ion in the series of lithium, sodium, and potassium cyanide. The polymerizations took place only in aprotic polar solvents, and did not occur in weak polar solvents and in protonic solvents.  相似文献   

12.
Various crown ethers were used as phase-transfer catalysts for free radical polymerizations of some water-insoluble vinyl monomers such as acrylonitrile, methylmethacrylate and styrene with persulfate as initiator. The catalytic abilities of these crown ethers for free radical polymerization of acrylonitrile with S2O82?ion as an initiator were in the order: 18-crown-6 > 15-crown-4 > 12-crown-4 > benzo-15-crown-5 > dibenzo-18-crown-6. Among various persulfates such as Na2S2O8 K2S2O8 and (NH4)2S2O8, ammonium persulfate was the optimum initiator for the polymerization of acrylonitrile catalyzed by 18-crown-6 or 15-crown-5. Among the organic solvents used, chloroform seems to be the best solvent for the catalytic polymerization of acrylonitrile. An apparent activation energy of 72.9 kJ mol?1 was observed for the polymerization of acrylonitrile. The catalytic reaction rates of free radical polymerization for these hydrophobic vinyl monomers were in the order: acrylonitrile > methylmethacrylate > styrene > isoprene. Effects of concentrations of crown ether, initiator, and nitrogen on the polymerization of these vinyl monomers were investigated.  相似文献   

13.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

14.
Mechanochemical polymerization of vinyl monomers on vibromilled aluminum, iron and silica powders were examined at 293 K. It was found that aluminum and silica powders were effective as an initiator for the polymerization even after milling. The order of the monomer reactivity on the vibromilled silica powder was vinyl acetate < styrene < methyl methacrylate < acrylonitrile and it was in agreement with the order of monomer reactivity in anionic polymerization. The activity of examined powders as the initiator for the polymerization of methyl methacrylate was iron < aluminum ? silica and it was explained by the emission intensities and the kinetic energies of exoelectron emitted from powders.  相似文献   

15.
Summary Copolymers of ethylene with styrene, methyl methacrylate, acrylonitrile, and vinyl acetate were prepared by reaction in toluene in presence of tributylborine as polymerization catalyst.  相似文献   

16.
A new monomer, 2-methylene-7-oxabicyclo[2.2.1]heptane ( IV ) was synthesized via four steps. Its structure was confirmed by IR, 1H-NMR, and 13C-NMR spectra as well as elementary analysis. Free radical polymerization and copolymerization of IV were investigated. No homopolymer was obtained due to the effect of allyl inhibition. When IV copolymerized with electron-donor monomers, such as vinyl acetate and stvrene, IV acted as inhibitor for the polymerization of vinyl acetate, but could not inhibit the polymerization of styrene. However, the copolymers of IV with electron-accepting monomers, such as methyl methacrylate, acrylonitrile, or maleic anhydride (MA) were obtained. The contents of IV in the copolymers increased as e values of electron-accepting monomers increased. Strictly alternating copolymer was obtained only in the case of MA and IV . The thermal properties of copolymers were investigated. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

18.
Polymerization of acrylonitrile photoinitiated by naphthalene, anthracene, phenanthrene, and pyrene is accelerated by an admixture of zinc (II) chloride, acetate, or nitrate. The effect of zinc (II) salts on the rate of pyrene-photoinitiated polymerization of acrylonitrile leads to an increase in this rate in the order Zn/OCOCH3/2 < ZnCl2 < Zn/NO3/2. The maximum polymerization rate is achieved at the molar ratio [ZnCl2]/([ZnCl2] + [pyrene]) approximately 0.7. In contrast to the photoinitiated polymerization of acrylonitrile, the methyl methacrylate admixture of zinc (II) chloride exerts a smaller effect on the polymerization rate. In the pyrene-photoinitiated polymerization of styrene an admixture of zinc (II) chloride retards the polymerization rate. Fluorescence of aromatic hydrocarbon in the system acrylonitrile–aromatic hydrocarbon is efficiently quenched by zinc (II) chloride. Stern–Volmer constants determined for pyrene (80 dm3 mole?1), phenanthrene (66 dm3 mole?1), and naphthalene (49 dm3 mole?1) are higher by about 2–3 orders of the Stern–Volmer constants for fluorescence quenching of aromatic hydrocarbons by acrylonitrile in the absence of ZnCl2. The fluorescence of anthracene in acrylonitrile is not quenched by ZnCl2. The acceleration effect of Zn (II) salts on the polymerization of acrylonitrile photoinitiated by aromatic hydrocarbons depends on two factors: an increase in the ratio of the rate constant of the growth and termination reactions, kp/kt, and an increase in the quenching constant of fluorescence of aromatic hydrocarbon, kq, by the complex {acrylonitrile…ZnCl2}. ZnCl2 thus influences both the growth and initiation reactions of the polymerization process.  相似文献   

19.
The free-radical polymerization of methyl methacrylate (MMA) initiated by systems comprizing benzoyl peroxide (BPO) and different organoaluminium compounds (OACs) has been studied. The influence of the type of OAC, concentration of components of the initiation system, temperature, and time on the reaction yield have been determined. Systems containing BPO and diethylaluminium chloride (Et2AlCl) have been found to enable us to obtain, in high yields at room temperature, of homopolymers of MMA, methyl acrylate, acrylonitrile (AN), vinyl acetate, and the alternating AN/styrene (St) copolymer; they are, however, not very active in the homopolymerization of St and vinyl chloride. Factors affecting the polymerization yield have been discussed in terms of the mechanism of the reaction between BPO and OACs, reactivity of alkyl radicals formed in these systems, and catalytic effect of OAC in the propagation step.  相似文献   

20.
Abstract

Polymerizations of methyl methacrylate initiated by organocuprates in tetrahydrofuran solution have been investigated. The heterocuprate lithium n-butylcyanocuprate was found to be an effective initiator at - 78°C, and lithium di-n-butylcuprate was confirmed as an effective initiator; both species give rapid polymerization to virtually complete conversion of monomer. Polydispersities (Mw/Mn ) are about 1.5. Polymerizations have an inherent termination reaction and a low initiator efficiency. Polymerization of methyl vinyl ketone is virtually uncontrollable, and polymerizations of methyl methacrylate are inhibited by styrene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号