首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore an effect of temperature on the dielectric properties in polyaniline/poly(vinylidene fluoride) (PANI/PVDF) composites, the dielectric properties of these composites with different volumetric fractions of PANI (?PANI) were studied in a wide temperature range. An increase in the effective conductivity (σeff) and dielectric permittivity (?eff) was observed with increasing temperature in all PANI/PVDF composites. Particularly, for the composite with ?PANI = 0.01, less than the percolation threshold (?C = 0.045), the increase in σeff and ?eff was most significant. A tunneling effect could be responsible for the unique dielectric properties. The results provided us useful information related to the microstructure of composites, which was not reported previously. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Current Applied Physics》2020,20(8):994-1000
We report the influence of reactive oxygen (O2) and argon (Ar) plasma based ITO:Zr bi-layers for silicon heterojunction (SHJ) solar cells. The purpose of reactive O2 sputtered ITO:Zr was to improve the Hall mobility and work function while the Ar based ITO:Zr films play an important role to maintain good electrical characteristics. The thickness of reactive O2 based ITO:Zr films was fixed at 15 nm while Ar based films was varied from 65 to 125 nm, respectively. ITO:Zr bi-layers with the thickness of 15/105 nm deposited by O2 and Ar plasma, respectively, showed lowest resistivity of 2.358 × 10−4 Ω cm and high Hall mobility of 39.3 cm2/V · s. All ITO:Zr bi-layers showed an average transmittance of above 80% in the visible wavelength (380–800 nm) region. Work function of ITO:Zr bi-layers was calculated from the X-ray photoelectron spectroscopic (XPS) data. The ITO:Zr work function was enhanced from 5.3 eV to 5.16 eV with the variation of ITO:Zr bi-layers from 15/65 to 15/125 nm, respectively. Front barrier height in SHJ solar cells can be modified by using TCO films with high work function. The SHJ solar cells were fabricated by employing the ITO:Zr bi-layer as front anti-reflection coating. The SHJ solar cells fabricated on ITO:Zr bi-layer with the thickness of 15/105 nm showed the best photo-voltage parameters as; Voc = 739 mV, Jsc = 39.12 mA/cm2, FF = 75.97%, η = 21.96%.  相似文献   

3.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
郝志红  胡子阳  张建军  郝秋艳  赵颖 《物理学报》2011,60(11):117106-117106
研究了掺杂后poly(3,4-ethylene dioxythiophene):poly(styrenesulphonic acid)(PEDOT ∶PSS)电导率的变化以及掺杂PEDOT ∶PSS薄膜对聚合物太阳能电池器件性能的影响. 实验发现,向PEDOT ∶PSS中掺入极性溶剂二甲基亚砜(DMSO)明显提高了薄膜的电导率,掺杂后的电导率最大值达到1.25 S/cm,比未掺杂时提高了3个数量级. 将掺杂的PEDOT ∶PSS薄膜作为缓冲层应用于聚合物电池 (ITO/PEDOT ∶PSS/P3HT ∶PCBM/LiF/Al) 中,发现高电导率的PEDOT ∶PSS降低了器件的串联电阻,增加了器件的短路电流,从而提高了器件的性能. 最好的聚合物太阳能电池在100 mW/cm2的光照下,开路电压(Voc)为0.63 V,短路电流密度(Jsc)为11.09 mA·cm-2,填充因子(FF)为63.7%,能量转换效率(η)达到4.45%. 关键词: PEDOT ∶PSS 电导率 聚合物太阳能电池 能量转换效率  相似文献   

5.
Organic solar cells using the CuPc and PTCBI semiconductor layers were studied. A high open circuit voltage of 1.15 V was obtained in a device with ITO/PEDOT:PSS/CuPc (15 nm)/PTCBI (7 nm)/Al structure. Results were interpreted in terms of a modified CuPc-Al Schottky diode for the thin PTCBI case and a CuPc-PTCBI heterojunction for the thick PTCBI case. Also, the formation of a thin aluminum oxide layer under the aluminum electrode was postulated. This layer has a beneficial aspect wherein shunting losses are reduced and a high photovoltage is enabled. However, it adds greatly to the series resistance to a point where the short circuit current density is reduced. CuPc Schottky diodes with an ITO/PEDOT:PSS/CuPc/Al structure yielded a high V oc of 900 mV for a CuPc layer of thickness 140 nm. The V oc increased with increase in CuPc layer thickness.  相似文献   

6.
The present paper reports the preparation of a solar cell which has a cross-sectional scheme: ITO/CdS/PbS, containing a commercially transparent conductive ITO; chemically deposited n-type CdS (340 nm) and absorbed layer of p-type PbS (1400 nm). The structural and optical properties of the constituent films are presented. X-ray diffraction showed that all of the thin films are polycrystalline. Using scanning electron microscopy, the present study revealed that the films have uniform surface morphology over the substrate. The solar cell was characterized by determining the open circuit voltage, short-circuit current density, and J–V under 40 mW/cm2 solar radiation. The efficiency of the solar cells was 1.35%, which is much higher (0.041, 0.5 and 0.1–0.4%) and slightly smaller (1.65%) than some solar cells reported in the literature.  相似文献   

7.
《Current Applied Physics》2014,14(8):1144-1148
In this study, we fabricated semitransparent polymeric solar cells with an inverted structure, with the structure being indium tin oxide (ITO)/cesium carbonate (Cs2CO3)/poly(3-hexylthiophene) (P3HT):1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61(PCBM)/transparent multilayer. The structure of the transparent multilayer (DMD multilayer), which acted as the anode, was MoO3 (1–40 nm)/Ag (10 nm)/MoO3 (0–80 nm). The inner MoO3 layer showed a great performance changes depending on the variation of thickness, while the outer MoO3 layer showed relatively slight changes. The best performance was observed with the of anode DMD multilayer thickness of 6/10/40 nm and with the illumination from the ITO side in organic solar cell devices. High performance result was observed in high reflectance and low transmittance of the DMD layer.  相似文献   

8.
In this paper we study the electro-optical behavior and the application of indium–tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO–AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO–AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075×10?4 Ω?cm when the thickness of the AZO buffer layer was 12 nm. The ITO–AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased.  相似文献   

9.
In this paper, photovoltaic characteristics of ITO/PEDOT:PSS/SubPc:Rubrene (mixed ratio R by weight)/C60/Bphen/Ag organic solar cells (OSCs) are analyzed in detail. The intrinsic properties of a SubPc:rubrene doped layer on device performance were discussed based on theoretical analysis of the experimental OSCs. The ratio R was 0, 0.25, 0.5, and 0.75,1, respectively. The results showed that when R was 0.75 performing the best, which owned the highest short circuit current (J sc ) 6.61 mA/cm2 and highest power conversion efficiency (PCE) 2.44%, the FF was 41% and the open circuit current (V oc ) was 0.905 V. The suitable HOMO level, absorption capacity, carrier transport ability and exciton diffusion length (L D ) of organic material are very important for the performance of the device.  相似文献   

10.
In this work, we investigated for the first time the characteristics of (poly (3-hexylthiopene) and [6, 6]-phenyl C61-butyric acid methyl ester) (P3HT:PCBM) blends-based organic solar cell with 1.25?mg/mL boric-acid (H3BO3)-doped poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer which is irradiated under the 40 Gray (Gy) dose of gamma (γ) ray. Experimental results showed that the parameters of solar cell improved with exposure to low-dose gamma radiation. In particular, it has provided a significant improvement in short-circuit current density (Jsc) and power conversion efficiency (PCE). About 49% increase in PCE to 1.22% and 40% increase in Jsc to 6.28?mA/cm2 was obtained between the bare device and the device containing irradiated PEDOT:PSS:H3BO3. Also, it was determined that the H3BO3-doped PEDOT:PSS is more stable to temperature. More importantly, solar cell containing gamma-irradiated PEDOT:PSS:H3BO3 showed best performance comparing to conventional PEDOT:PSS-based cell.  相似文献   

11.
Thin films of antimony sulfide‐selenide solid solutions (Sb2Sx Se3–x) were prepared by chemical bath deposition and thermal evaporation to constitute solar cells of a transparent conductive oxide (FTO)/CdS/Sb2Sx Se3–x/C–Ag. The cell parameters vary depending on the sulfide‐selenide composition in the films. The best solar cell efficiency of 3.6% was obtained with a solid solution Sb2S1.5Se1.5 prepared by thermal evaporation of the precipitate for which the open circuit voltage is 0.52 V and short circuit current density, 15.7 mA/cm2under AM 1.5G (1000 W/m2) solar radiation. For all‐chemically deposited solar cells of Sb2S1.1Se1.9 absorber, these values are: 2.7%, 0.44 V, and 15.8 mA/cm2, and for Sb2S0.8Se2.2, they are: 2.5%, 0.38 V and 18 mA/cm2. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
《Current Applied Physics》2020,20(1):219-225
In this study, we investigated the effect of plasma treatment on an indium tin oxide (ITO) film under an ambient Ar atmosphere. The sheet resistance of the plasma-treated ITO film at 250 W (37.6 Ω/sq) was higher than that of the as-deposited ITO film (34 Ω/sq). Plasma treatment was found to decrease the ITO grain size to 21.81 nm, in comparison with the as-deposited ITO (25.49 nm), which resulted in a decrease in the Hall mobility. The work function of the Ar-plasma-treated ITO (WFITO=4.17 eV) was lower than that of the as-deposited ITO film (WFITO = 5.13 eV). This lower work function was attributed to vacancies that formed in the indium and oxygen vacancies in the bonding structure. Rear-emitter silicon heterojunction (SHJ) solar cells fabricated using the plasma-treated ITO film exhibited an open circuit voltage (VOC) of 734 mV, compared to SHJ cells fabricated using the as-deposited ITO film, which showed a VOC of 704 mV. The increase in VOC could be explained by the decrease in the work function, which is related to the reduction in the barrier height between the ITO and a-Si:H (n) of the rear-emitter SHJ solar cells. Furthermore, the performance of the plasma-treated ITO film was verified, with the front surface field layers, using an AFORS-HET simulation. The current density (JSC) and VOC increased to 39.44 mA/cm2 and 736.8 mV, respectively, while maintaining a WFITO of 3.8 eV. Meanwhile, the efficiency was 22.9% at VOC = 721.5 mV and JSC = 38.55 mA/cm2 for WFITO = 4.4 eV. However, an overall enhancement of 23.75% in the cell efficiency was achieved owing to the low work function value of the ITO film. Ar plasma treatment can be used in transparent conducting oxide applications to improve cell efficiency by controlling the barrier height.  相似文献   

13.
张苑  赵颖  蔡宁  熊绍珍 《物理学报》2008,57(9):5806-5809
以商用金红石相TiO2粉末为原料,通过在碱性溶液中150℃水热48h的方法合成TiO2纳米管.采用SEM,TEM,XRD分析手段对TiO2纳米管的形貌和结构演变进行了表征.制成的TiO2纳米管与TritonX-100,乙酰丙酮混合后,通过丝网印刷的方法涂敷到ITO导电玻璃衬底上,并且在450℃下烧结30min后得到可应用于染料敏化太阳电池的多孔光阳极.将此光阳极浸泡于N719染料敏化后,与镀铂对电极组装电池,两者之间灌 关键词: 2纳米管')" href="#">TiO2纳米管 染料敏化太阳电池 水热法  相似文献   

14.
Poly(vinylidene fluoride) (PVDF) and its blends with polyaniline (PANI) doped with dodecylbenzene sulfonic acid (DBSA) were characterized by electrical conductivity, differential scanning calorimetry (DSC) and X‐ray scattering techniques.

The onset of an infinite cluster (InC) of conducting, highly anisometric PANI/DBSA particles in PVDF/(PANI/DBSA) blends was observed at the percolation threshold as low as w*≈3.5 wt.%. The small angle X‐ray scattering (SAXS) data confirmed the expected spatial organization of PANI/DBSA needles into fractal‐like structures above w*. A slight decrease of both the DSC and the wide‐angle X‐ray scattering (WAXS) degrees of crystallinity of PVDF with the PANI/DBSA mass content w was explained by strong interactions at the PVDF/(PANI/DBSA) interface resulting in the loss of crystallizability of a fraction of sterically immobilized chains of PVDF in boundary layers around PANI/DBSA particles. The available data suggest that the conductive paths within InC of PANI/DBSA in PVDF/(PANI/DBSA) blends were formed primarily by the end‐to‐end contacts of PANI/DBSA fibrils.  相似文献   

15.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We synthesized a star copolymer of poly(vinylcarbazole) (PVK) branched from a fullerene (C60) center, and investigated its optical absorption and photoluminescence properties. The chemically hybridized PVK-C60 was then employed as a hole-transporting layer of the electroluminescent device with a poly(9,9-dihexylfluorene-2,7-divinylene-m-phenylenevinylene-stat-p-phenylenevinylene) (CPDHFPV) emitting layer. The ITO/PVK-C60/CPDHFPV/LiF/Al device showed a strong electroluminescence quenching due to a direct contact of the PVK-C60 and the CPDHFPV layers. In contrast, when an additional PVK layer was introduced between the two layers, the electroluminescence was largely enhanced. The emitted light power of the ITO/PVK-C60/PVK/CPDHFPV/LiF/Al device was improved by 3 times compared with the device without the PVK-C60 layer.  相似文献   

17.
《Current Applied Physics》2009,9(5):1175-1179
Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) capped PbS nanorods about 100 nm in diameter and 400 nm in length were synthesized via a hydrothermal route in toluene and dimethylsulfoxide solution. By blending the PbS nanorods with the MDMO-PPV as the active layer, bulk heterojunction solar cells with an indium tin oxide (ITO)/polyethylenedioxythiophene/polystyrenesulphonate (PEDOT: PSS)/MDMO-PPV: PbS nanorods/Al structure were fabricated in a N2 filled glove box. Current density–voltage characterization of the devices showed that the solar cells with PbS nanorods hybrid with MDMO-PPV as active layer were better in performance than the devices with the polymer only.  相似文献   

18.
The electrical properties and the degradation behavior of hydrogenated amorphous silicon alloys (a-Si1–x A x : H, with A=C, Ge, B, P) in designs of pin, pip, nin, and MOS structures are investigated by measuring the dark and light I(V) characteristics and the spectral response as well as the space-charge-limited current (SCLC), the time of flight (TOF) of carriers and the field effect (FE). These investigations give an overview of our recent work combined with new results emphasizing the physics of the a-Si:H pin solar cells. We discuss the stabilizing influence on the degradation behavior achieved by profiling the i layers of the pin solar cells with P and B. Two kinds of pin solar cells, namely glass/SnO2/p(C)in/metal and glass/metal/pin/ITO, are investigated and an explanation of their different spectral response behavior is given. SCLC measurements lead to the conclusion that trapping is also involved in the degradation mechanism, as is recombination. TOF experiments on a-Si1–x Ge x : H pin diodes indicate that the incorporation of Ge widens the tail-state distribution below the conduction band. FE measurements showed densities of gap states of about 5×l016cm–3eV–1.  相似文献   

19.
Using a high throughput, in‐line atmosphere chemical vapor deposition (APCVD) tool, we have synthesized amorphous aluminum oxide (AlOx) films from precursors of trimethyl‐aluminum (TMA) and O2, yielding a maximum deposition 150 nm min–1 per wafer. For p‐type crystalline silicon (c‐Si) wafers, excellent surface passivation was achieved with the APCVD AlOx films, with a best maximum effective surface recombination velocity (Seff,max) of 8 cm/s following a standard industrial firing step. The findings could be attributed to the existence of large negative charge (Qf ≈ –3 × 1012 cm–2) and low interface defect density (Dit ≈ 4 × 1011 eV–1 cm–2) achieved by the films. This data demonstrates a high potential for APCVD AlOx to be used in high efficiency, low cost industrial solar cells. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Continuous growth of the thin-film electronics market stimulates the development of versatile technologies for large-scale patterning of thin-film materials on rigid and flexible substrates, and laser technologies are a promising method to accomplish the scribing processes. Lasers with picosecond pulse duration were applied in scribing of complex multilayered CuIn x Ga(1−x)Se2 (CIGS) solar cells deposited on a polyimide substrate. The ablative properties of the films were examined as a function of the wavelength of laser radiation, pulse energy, and the irradiation dose. The selective removal of ITO and CIGS layers was achieved with 355 nm irradiation without any significant damage to the underlying layers in the ITO/CIGS/Mo/PI solar cell system. The 355 nm wavelength was also found to be favorable for scribing of absorber layer in a ZnO/CIGS/Mo/PI solar cell system. 266 nm radiation significantly modified the film structure due to high absorption. Extensive melt formation in the CIGS layer was found when 532 nm radiation was applied, though the trenches were smooth and crack-free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号