首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the study was to determine thermo-mechanical properties and applicability of sunflower husk waste as a filler for ultra low density polyethylene composites. The post agricultural waste filler was milled and chemically treated with (3-aminopropyl)triethoxysilane (3-APS). The amount of filler used was 5, 10 and 20 wt%. The mechanical and thermal properties of the composites containing unmodified and modified natural fillers were determined in the course of static tensile test, rebound resilience by Schob method, and dynamic mechanic thermal analysis. The influence of filler loading and chemical modification of the filler on the morphology of natural composites was evaluated by SEM analysis.  相似文献   

2.
Physical properties of rubber compounds are affected by the filler–rubber interaction, filler dispersion in the rubber matrix, and cross-link structure formed during vulcanization. In particular, the cross-link structure is closely related to the physical properties of vulcanizates and has been analyzed using the swelling test and Flory-Rehner equation. However, the relationship between the structure and physical properties of vulcanizates cannot be explained by the cross-link density obtained using these methods. The cross-link density obtained from the swelling test is a complex result of the filler–rubber interaction occurring during the compounding as well as the chemical cross-link structure formed by sulfur during the vulcanization. Moreover, the rubber vulcanizates that use silica need to be separately analyzed for each factor as its physical properties are affected more by the filler–rubber interaction than by carbon black. Therefore, this study determines the factors that contribute to the total cross-link density of vulcanizates into chemical cross-link density and filler–rubber interaction via quantitative analysis using the swelling test results and Flory-Rehner and Kraus equations. The vulcanizates used for the analysis were carbon black-filled and silica-filled non-functionalized SSBR compounds with varying cure accelerator for each filler loading. Their chemical cross-link density was measured and the effect of the filler–rubber interactions on their mechanical and dynamic viscoelastic properties was investigated. Furthermore, the relationship between the structure and physical properties of rubber vulcanizates was elucidated.  相似文献   

3.
Rubber magnetic composites were prepared by incorporation of strontium ferrite into natural rubber-based continuous matrix. The prepared rubber compounds have model character and besides the rubber and the filler, they contained only ingredients of peroxide curing system, dicumyl peroxide as curing agent, and ethylene glycol dimethacrylate as co-agent. The work was focused on the evaluation of curing system composition and magnetic filler content on curing process, cross-link density, physical–mechanical and magnetic properties of tested materials. The achieved results revealed that the evaluated properties are dependent on the composition of curing system and on the content of ferrite too. Ferrite incorporated in the rubber matrix imparts magnetic properties to the composites considerably. In addition, the improvement of physical–mechanical properties with doping content of ferrite was observed.  相似文献   

4.
Carbon nano-tube (CNT)- and carbon fiber (CF)-filled polyolefin nano-composites were prepared by melt blending. The water absorption, expansion ratio, electrical conductivities, and physical and mechanical properties of the prepared nano-composites were extensively investigated. The experimental results showed that the water absorption increased with the elapsed time from the starting point when the samples were immersed into the water. The linear expansion ratios of the composites were found to increase gradually with time till reaching an equilibrium value. Composites with excellent dielectric properties could be obtained when the filler content was above the percolation threshold. The addition of CNT and CF resulted in no obvious improvement in mechanical properties in the present study, but both Shore hardness and Vicat softening temperature (VST) of the composites increased with increasing filler content. The present work will be of practical importance to the CNT/CF filler composites design, and optimization of processing variables, as well as the further exploration of the “processing-structure-property” relationship of polyolefin materials.  相似文献   

5.
Polyurethane/silica nanocomposites were prepared by solution blending of polyurethane water dispersion (PUD) based on polycarbonate macrodiol with colloidal silica aqueous sol LUDOX TMA. Because of mixing PUDs made from linear polyurethane with the nanofiller, only physical polymer/filler type of interface formed by hydrogen bonds was obtained. As a result the materials were possible to reuse after dissolution in acetone followed by dispersion in water. The effect of colloidal silica content on mechanical, thermal, morphological, and swelling properties of obtained films was tested by tensile test, dynamic mechanical thermal analysis, thermogravimertic analysis, scanning electron microscopy, atomic force microscopy, and swelling analyses. The nanocomposites were classified in three groups differing in the internal structure and functional properties: organic matrix filled with inorganic nanofiller (up to 10 wt% of silica), bicontinous systems (25 and 32 wt% of silica) and inorganic matrix filled with polyurethane (50 and 60 wt% of silica). Only small amount of colloidal silica (up to 10 wt%) improves thermo-mechanical properties, smoothes the materials, and suppresses extent of swelling without changing of the films transparency.  相似文献   

6.
In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys.  相似文献   

7.
A novel strategy of radical polymerization of sodium 4-styrenesulfonate on the surface of carbon black (CB) in the solid state was developed to prepare hydrophilic carbon nanoparticles (PNASS-CB). A high performance natural rubber latex (NRL)/PNASS-CB composite was produced by the latex compounding technique. Scanning electron microscope shows considerable improvement in the dispersion of PNASS-CB in rubber matrix. The lower degree of filler–filler networks and the stronger filler–rubber interaction of PNASS-CB in rubber matrix were confirmed by dynamic mechanical thermal analysis. Rheometric properties of NRL/PNASS-CB, like scorch time and optimum cure time, decreased. Tensile strength, tear strength, and elongation at break increased due to stronger interaction between the PNASS-CB and rubber matrix. Dynamic mechanical properties of the modified carbon nanoparticles further corroborated a significant contribution from the better dispersion and efficient load transfer of PNASS-CB on the static and dynamic mechanical properties of composites.  相似文献   

8.
Titanium-based metal composites (TMCs) are showing great potential to replace existing traditional materials in aerospace, automotive, and other high temperature engineering applications. This is due to their excellent mechanical, thermal, and physical properties and improved strength to weight ratio. Weight savings in the aerospace industry results in higher efficiency. Carbon nanotubes (CNTs), because of their low density and high Young's modulus, are considered to be an excellent reinforcement for metal matrix composites (MMCs). In the last 20 years extensive research has been carried out to investigate the combination of carbon nanotubes with aluminum, nickel, copper, magnesium, and other metal matrices. The production techniques such as mechanical alloying through powder metallurgy routes and their effects on the mechanical properties of CNT reinforced TMCs are reviewed in this article. The role of the volume fraction of carbon nanotubes and their dispersion into the metal matrix are highlighted. Governing equations to predict the mechanical and tribological properties of CNT reinforced titanium matrix composites are deduced. With the help of this initial prediction of properties, the optimal processing parameters can be optimized. Successful development of CNT reinforced TMCs would result in better wear and mechanical behavior and enhance their ability to withstand high temperature and structural loading environments.  相似文献   

9.
To improve the wear resistance of carbon fabric reinforced polyimide (CF/PI) composite, surface-modified graphene (MG) was synthesized and employed as a filler. The flexural strength, Rockwell hardness and thermal properties of the composites were tested. The composites were also evaluated for their tribological properties in a ring-on-block contact mode under dry sliding conditions. The results showed that the wear rate of MG reinforced CF/PI composites was reduced when compared to unfilled CF/PI composite. It was found that the 1?wt% MG filled CF/PI composites exhibited the optimal tribological properties. The worn surface, wear debris and transfer films were analyzed by scanning electron microscopy (SEM) and optical microscopy (OM) with the results helping to characterize the wear mechanism.  相似文献   

10.
To evaluate the reinforcing potential of pyrolytic carbon black, styrene-butadiene rubber (SBR) was filled with pelletized pyrolytic carbon black (pCBp), N660 industrial CB, their blend in a 1/1 ratio, and the latter also in the absence and presence of additional organoclay (OC). The Shore A hardness of the filled SBR gums was 65 ± 2°. Effects of the compositions on the filler dispersion, cure behavior, dynamic mechanical thermal parameters (including the Payne effect), tensile mechanical (including the Mullins effect), and fracture mechanical (making use of the J-integral concept) properties were studied and discussed. Though pCBp had a higher specific surface weight than CB, the latter proved to be a more active filler with respect to the tensile strength. The opposite tendency was found for the tear strength and fracture mechanics characteristics (J-integral at crack tip opening, tearing modulus, and trouser tear strength). This was traced to an enlargement in the crack tip damage zone supported by the dispersion characteristics of the pCBp. The performance of pCBp was similar to that of CB with respect to some other properties. OC supported the filler networking which positively affected the resistance to crack initiation.  相似文献   

11.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

12.
This article discusses the role of nanoscale calcium carbonate (nCC) surface treatment in affecting the mechanical, rheological, and thermal properties of linear low-density polyethylene (LLDPE). The mechanical tests indicated that nCC could simultaneously reinforce and toughen LLDPE. In addition, the composite sample with methacrylic acid (MA)-treated nanoparticles shows further increased mechanical properties as compared to unmodified nanoparticles. In the presence of dicumyl peroxide (DCP), a small amount of MA could increase markedly the mechanical properties of LLDPE/nCC composites. The results of rheological property analysis indicated that the viscosity increased with increasing amount of the filler, especially at low shear rates, but showed a substantial reduction with increasing concentration of the reactive monomer. The thermal behavior of these materials is evaluated by differential scanning calorimetry and thermogravimetric analysis. The addition of a small amount of MA and DCP enhances the stabilization of the blends.  相似文献   

13.
Graphene nanoplatelets (GNPs), the most important mass‐produced graphene, are fabricated as a mechanical reinforcement for epoxy matrix nanocomposites. Current performance of GNPs as a reinforcing filler is limited by their agglomeration and weak interfacial interaction with certain polymer matrices. Herein, an approach to produce noncovalently functionalized GNPs (F‐GNPs) is reported that can be extended to the industrial level of mass production. The one‐step functionalization process uses melamine, a low‐cost chemical, to improve the interfacial adhesion and dispersion in an epoxy matrix. The mechanical properties of nanocomposites prepared with the F‐GNP flakes are much better (94.3% and 35.3% enhancements in Young's modulus and tensile strength, respectively) than those of the unfilled pure epoxy. Experimental data are analyzed using the Halpin–Tsai model. The fabrication process developed in this paper provides a strategy to use GNPs at the industrial level in lightweight and high‐strength structural applications.  相似文献   

14.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

15.
A series of composites with Twaron fabric as reinforcement and polytetrafluoroethylene (PTFE) as matrix were fabricated with various contents of PTFE, viz. 30, 40, 50, 60, and 70 vol%. The Rockwell hardness and tensile strength of the composites were tested according to the corresponding standards. The composites were also evaluated for their tribological behaviors on an MPX-2000A friction and wear tester. The worn surface and wear debris of the composites were observed by scanning electron microscopy (SEM) and the mechanism is discussed. The PTFE content in the composites had a great influence on both the mechanical and tribological properties. The composite with 40 vol% PTFE provided the proper wetting of the fibers and the best load transfer efficiency and, hence, showed the best mechanical properties and tribological behaviors.  相似文献   

16.
A new method to prepare single-polymer high-density (HDPE)-ultra high molecular weight polyethylene (UHMWPE) fiber (PE-PE homocomposites) composed and also PE-PE homocomposites containing HDPE organo montmorillonite clay (OMMT) nanocomposites as a matrix (PE nanohomocomposites) was used. Owing to the major importance of fiber impregnation by the matrix and its effect on the adhesion of matrix/fiber and, consequently, the mechanical properties of the composite, a combination of powder impregnation and film stacking methods, utilizing compression molding, were used for manufacturing the PE-PE homocomposites and PE nanohomocomposites. In addition, PE nanohomocomposites with the matrix containing different amounts of nanoclay were prepared to investigate the effect of the clay on the interfacial and mechanical properties of the PE-PE nanohomocomposites. Several different processing conditions were examined to determine the best conditions for manufacturing of the PE-PE homocomposite and PE nanohomocomposites and it was concluded that 40 bar and 10 min of compression molding resulted in the highest overall mechanical properties. The PE-PE homocomposites and PE-PE nanohomocomposites showed identical trends for the relationship between the effects of processing conditions and mechanical properties. Mechanical results demonstrated that clay platelets could increase the interfacial strength by improving physical entanglements between fiber and matrix through better cocrystallization.  相似文献   

17.
Compactness and large energy conversion capacity are the main reasons of development of sophisticated ceramics materials in microfibers form, which are prepared for high-speed multiferroic systems and devices. These multifunctional composite applications are owing to coupling of electrical and magnetic properties, as well as additional thermal and mechanical properties. So that, they are suitable for magnetic sensors, electrically tunable non-linear transducers, and non-volatile memories. In our experiment, the thin fibers ceramics have been produced using special environmental chamber where the high temperature sintering can be protected by controlling such parameters as temperature and sintering atmosphere. Consequently, for these purposes structural and physical properties, preparation and thermal synthesis of micrometer sized lead lanthanum zirconate titanate (PLZT) fibers were investigated thoroughly. Since the phase transition properties of PLZT fibers differ much, the production process of fibers suffers from lack of proper high temperature control. Consequently, our experiments should help to eliminate this drawback, so that various technological conditions, parameters, and subsequent sintering atmosphere with different mixtures of PbO and ZrO were experimentally tested. Final conclusions include comparative analysis of obtained PLZT fibers ferroelectric phase transition properties to specific sintering atmosphere.  相似文献   

18.
Abstract

The nodal-line semimetals are new and very promising materials for technological applications. To understand their structural, mechanical, lattice dynamical and thermal properties in detail, we have investigated theoretical study of ZrXY (X = Si,Ge; Y = S,Se) using Density Functional Theory for the first time. Obtained lattice parameters are in excellent agreement with previous experimental data. These nodal-line semimetals obey the mechanical stability conditions for tetragonal structure. We obtain Bulk modulus, Shear modulus, Poisson’s ratio, Pugh ratio, sound velocities and thermal conductivity using elastic constant. All the materials behave in brittle manner. Poisson’s ratio data and Bader charge analysis results indicate that the ionic bonding characters are dominant. Next, the lattice dynamical properties are calculated. Phonon density of states shows that nodal-line semimetals ZrXY are also dynamically stable in the tetragonal structure. Raman and IR active phonon modes are determined. Highest optical mode at gamma point corresponds to A2u (IR active) and Eg (Raman active) modes for ZrXSe and ZrXS, respectively. Based on phonon density of states, thermal properties such as Helmholtz free energy, entropy, heat capacity at constant volume and Debye temperature are also presented and discussed.  相似文献   

19.
In this work, the thermal expansion coefficient (CTE) of a composite containing spherical particles surrounded by an inhomogeneous interphase embedded in an isotropic matrix is evaluated by means of a new model. The thermomechanical properties of the interphase are formulated as continuous radial functions. It is assumed that this third phase developed between the polymeric matrix and the filler particles contains both areas of absorption interaction in polymer surface layers onto filler particles as well as areas of mechanical imperfections. It can be said that the concept of boundary interphase is a useful tool to describe quantitatively the adhesion efficiency between matrix and particles and that there is an effect of this phase on the thermomechanical properties of the composite. The thickness and volume fraction of this phase were determined from heat capacity measurements for various filler contents. On the other hand, it is assumed that the particle arrangement (distribution) which can be considered as an influence of neighboring inclusions and their interaction should affect the thermomechanical constants of the composite. The theoretical predictions were compared with experimental results as well as with theoretical values from expressions obtained from other workers and they were found to be in satisfactory agreement.  相似文献   

20.
Different organophilic layered silicates and a modified hydrotalcite were used as functional nanofillers for thermoplastic and thermosetting polymers. Polyamide 6 (PA6) and poly(butylene terephthalate) silicate nanocomposites were prepared by melt compounding using a twin‐screw extruder. The morphology of the materials was investigated by transmission electron microscopy and small‐angle X‐ray scattering, and was found to be characterized by homogeneous dispersion of high aspect ratio silicate layers in the polymer matrix. The PA6 nanocomposite displayed excellent thermo‐mechanical properties at low filler loadings and improved barrier properties. Epoxy nanocomposites have also been prepared and characterized with regard to their morphology and their water vapor permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号