首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 122 毫秒
1.
宋文辉  姚军  张凯 《力学学报》2021,53(8):2179-2192
页岩储层孔隙结构复杂, 气体赋存方式多样. 有机质孔隙形状对受限空间气体吸附和流动规律的影响尚不明确, 导致难以准确认识页岩气藏气体渗流机理. 为解决该问题, 本文首先采用巨正则蒙特卡洛方法模拟气体在不同形状有机质孔隙(圆形孔隙、狭长孔隙、三角形孔隙、方形孔隙)内吸附过程, 发现不同形状孔隙内吸附规律符合朗格缪尔单层吸附规律, 分析了绝对吸附量、过剩吸附浓量、气体吸附参数随孔隙尺寸、压力的变化, 研究了孔隙形状对气体吸附的影响. 在明确不同形状有机质孔隙内气体热力学吸附规律基础上, 建立不同形状有机质孔隙内吸附气表面扩散数学模型和考虑滑脱效应的自由气流动数学模型, 结合分子吸附模拟结果研究了不同孔隙形状、孔隙尺寸有机质孔隙内吸附气流动与自由气流动对气体渗透率的贡献. 结果表明, 狭长孔隙内最大吸附浓度和朗格缪尔压力最高, 吸附气表面扩散能力最弱. 孔隙半径5 nm以上时, 吸附气表面扩散对气体渗透率影响可忽略. 本文研究揭示了页岩气藏实际生产过程中有机质孔隙形状对页岩气吸附和流动能力的影响机制.   相似文献   

2.
研究页岩的水分传输特征至关重要,不仅有助于认识页岩的物理化学性质,而且也有助于评价页岩气的吸附扩散和流动能力.本文设计了页岩的水分传输实验装置,采用美国伍德福德和中国南方龙马溪组页岩为研究对象,开展了不同温度、不同湿度下页岩的水分传输实验,研究了页岩的水分传输特征和影响因素.结果表明,页岩的水分吸附属于Ⅱ型曲线,包含着单分子层吸附、多分子层吸附和毛细凝聚的过程,GAB模型可用于描述页岩的水分吸附过程;水分吸附随着相对压力的增大而增强,有机碳含量和温度对页岩水分吸附起着增强作用,而方解石会抑制页岩的水分吸附;随着相对压力的增大,页岩的水分扩散系数呈现先增大后减小随后增加的趋势,其系数大约在8.73×10~(-9)~5.95×10~(-8)m~2/s之间;伍德福德页岩的等量吸附热均大于龙马溪页岩的等量吸附热,这与其页岩的成熟度有关.研究结果为认识页岩的物理化学性质和力学性能以及评价页岩气的吸附流动能力提供参考依据.  相似文献   

3.
研究页岩的水分传输特征至关重要,不仅有助于认识页岩的物理化学性质,而且也有助于评价页岩气的吸附扩散和流动能力.本文设计了页岩的水分传输实验装置,采用美国伍德福德和中国南方龙马溪组页岩为研究对象,开展了不同温度、不同湿度下页岩的水分传输实验,研究了页岩的水分传输特征和影响因素.结果表明,页岩的水分吸附属于II型曲线,包含着单分子层吸附、多分子层吸附和毛细凝聚的过程,GAB模型可用于描述页岩的水分吸附过程;水分吸附随着相对压力的增大而增强,有机碳含量和温度对页岩水分吸附起着增强作用,而方解石会抑制页岩的水分吸附;随着相对压力的增大,页岩的水分扩散系数呈现先增大后减小随后增加的趋势,其系数大约在8.73$\times$10$^{ - 9}\sim $5.95$\times $10$^{ - 8 }$m$^{2}$/s之间;伍德福德页岩的等量吸附热均大于龙马溪页岩的等量吸附热,这与其页岩的成熟度有关.研究结果为认识页岩的物理化学性质和力学性能以及评价页岩气的吸附流动能力提供参考依据.   相似文献   

4.
唐巨鹏  田虎楠  潘一山 《力学学报》2021,53(8):2193-2204
煤系页岩瓦斯主要以吸附态和游离态形式存在, 其解吸过程相对吸附过程具有普遍滞后现象, 因此从微细观角度定量研究其吸附?附解吸迟滞规律对页岩气井后期稳产增产具有重要意义. 在前人研究基础上结合核磁共振谱理论推导出能够准确表征煤系页岩瓦斯吸附?解吸迟滞效应微细观评价模型, 并采用核磁共振谱测试技术, 以双鸭山盆地东保卫煤矿三采区36# 煤层底板煤系页岩为研究对象, 进行煤系页岩瓦斯吸附?解吸迟滞效应核磁共振谱实验, 模拟不同储层原位应力状态煤系页岩瓦斯迟滞效应发生全过程, 进一步对吸附态瓦斯、游离态瓦斯以及微细观方法测定的宏观瓦斯迟滞规律进行定量化研究, 并对其发生机理以及其对深部煤系页岩瓦斯开采影响进行了初步探究. 结果表明: 应力状态下吸附态和游离瓦斯均有滞后效应; 瓦斯宏观迟滞系数与平均有效应力呈幂函数关系, 而瓦斯宏观迟滞效应中由吸附态或游离态瓦斯引起的迟滞系数与平均有效应力关系均可采用二次多项式拟合; 孔裂隙应力损伤和微孔隙瓦斯扩散受限耦合或许是煤系页岩瓦斯吸附?解吸迟滞效应产生根本原因之一.   相似文献   

5.
采用川南地区龙马溪组页岩样品,设计了页岩基质解吸-扩散-渗流耦合物理模拟实验,揭示了页岩基质气体流动特征以及压力传播规律.推导了页岩气解吸-扩散-渗流耦合数学模型并且利用有限差分法对数学模型进行数值求解,与实验结果相比较表明该数学模型能够很好地描述气体在页岩基质中的流动规律.同时对页岩基质气体流动的影响因素进行了分析,认为页岩基质的渗透率、扩散系数、解吸附常数等因素均能影响页岩基质气体的流量和压力传播规律,在页岩气藏的开发过程中需要考虑这些参数的影响,该数学模型为页岩气井产能计算提供了更准确的计算方法.   相似文献   

6.
煤岩吸附解吸性能评价对煤层气的开发十分重要。利用自行设计的煤岩吸附解吸性能评价装置,进行了CH4、CO2、N2等在煤岩中的吸附解吸性能评价。在此基础上,研究了不同参数超声波处理对煤层气解吸效果的影响,分析了超声波促进煤层气解吸的机理。研究表明,煤岩中的气体主要以吸附态和自由态存在,煤岩对不同气体吸附量从大到小依次为CO2、CH4、N2。经超声波处理后,煤层气的解吸速度可提高70%,同时煤层气的解吸量增加。解吸量增加幅度与超声波处理参数有关,随处理功率的增大,解吸量增加,增加幅度可达20%。分析认为超声波的"剥离"作用是超声波提高煤层气解吸效果的机理之一。  相似文献   

7.
利用自行研制的三轴渗流实验装置,开展了考虑孔隙压力、体积应力和温度影响的页岩中CH_4气体渗流规律研究。研究表明:(1)孔隙压力施加路径是影响CH_4渗透率的主要因素,孔隙压力由2MPa升高到8MPa,页岩渗透率随孔隙压力的升高而降低,降低幅度达到63.5%,后期降低速度逐渐变慢;孔隙压力由8MPa降低到2MPa,页岩渗透率随孔隙压力的升高而升高,升高速度逐渐加快。(2)渗透率随体积应力的升高逐渐降低,体积应力由9MPa增加到27MPa,页岩渗透率降低了58.5%,降低速度逐渐变慢。(3)相同孔隙压力和体积应力下,渗透率随温度的升高而逐渐降低,温度由20℃增加到50℃,页岩渗透率降低幅度达到62.1%,降低速度逐渐变慢,最后达到临界值。  相似文献   

8.
近年来,页岩气作为一种非常规天然气备受关注。在页岩气藏钻井与生产过程中,页岩膨胀是非常关键的问题之一。在页岩矿物组成分析的基础上,采用实际页岩样品和模拟页岩样品,利用高温高压页岩膨胀仪测量了页岩样品在蒸馏水中的膨胀性能,分析了温度、压力与粘土含量等因素对页岩膨胀性能的影响。结果表明,温度、压力对页岩的膨胀性能均有影响。在实验温度和压力区间内,温度越高、压力越低,页岩在蒸馏水中的膨胀越严重。页岩中的粘土矿物是影响页岩膨胀的最主要因素,粘土含量越高,页岩的膨胀率越大。页岩膨胀性能可以用非线性Log-Normal方程来定量描述。  相似文献   

9.
为探究气体吸附以及滑脱效应对页岩渗透率的影响规律,利用自主研制的渗流装置,开展了CO2的脉冲衰减渗流试验。试验结果表明:在低孔隙压力下,CO2吸附对渗透率计算结果影响较大,随着孔隙压力增大,CO2吸附对渗透率的影响逐渐减小;通过修正后的滑脱效应渗流公式对渗透率进行拟合,发现修正后的滑脱效应公式与渗透率变化趋势更加贴合;利用滑脱效应贡献率量化分析滑脱效应对渗透率的影响规律,孔隙压力为2.5MPa~4MPa时,滑脱效应对渗透率影响较大,贡献率达到27.78%,随着孔隙压力的增大,贡献率逐渐下降至8.44%,在低孔隙压力条件下,滑脱效应影响更加明显,随着孔隙压力的增大,滑脱效应影响呈指数形式逐渐减小。  相似文献   

10.
郜世才  任中俊 《应用力学学报》2020,(3):1314-1320+1408
页岩气的吸附特性主要依赖于甲烷分子在纳米孔隙中的吸附行为。本文运用巨正则蒙特卡洛法(GCMC)分析甲烷分子在石英、蒙脱石、有机质纳米孔中的吸附行为,研究气体压强、环境温度、孔径对甲烷吸附性能的影响规律。分子模拟结果表明:甲烷分子在有机质纳米孔中的吸附量明显大于在蒙脱石和石英纳米孔中的吸附量。在孔壁附近0.5nm范围内,甲烷分子近似平行于孔壁分布;而在远离孔壁面,甲烷分子的分布比较分散。三种纳米孔中吸附气所占比例在46.56%~82.20%之间。在相同温度和压强下,甲烷吸附量随着孔径的增大而线性增加;在相同温度和孔径下,甲烷吸附量随着压强的增大而增大,二者之间的物理关系可以近似采用幂函数进行描述,甲烷分子的吸附比例随着压强的增大而近似于线性减小;在相同压强和孔径下,甲烷吸附量随着温度的升高而线性降低。  相似文献   

11.
Gas production from shale gas reservoirs plays a significant role in satisfying increasing energy demands. Compared with conventional sandstone and carbonate reservoirs, shale gas reservoirs are characterized by extremely low porosity, ultra-low permeability and high clay content. Slip flow, diffusion, adsorption and desorption are the primary gas transport processes in shale matrix, while Darcy flow is restricted to fractures. Understanding methane diffusion and adsorption, and gas flow and equilibrium in the low-permeability matrix of shale is crucial for shale formation evaluation and for predicting gas production. Modeling of diffusion in low-permeability shale rocks requires use of the Dusty gas model (DGM) rather than Fick’s law. The DGM is incorporated in the TOUGH2 module EOS7C-ECBM, a modified version of EOS7C that simulates multicomponent gas mixture transport in porous media. Also included in EOS7C-ECBM is the extended Langmuir model for adsorption and desorption of gases. In this study, a column shale model was constructed to simulate methane diffusion and adsorption through shale rocks. The process of binary \(\hbox {CH}_{4}{-}\hbox {N}_{2}\) diffusion and adsorption was analyzed. A sensitivity study was performed to investigate the effects of pressure, temperature and permeability on diffusion and adsorption in shale rocks. The results show that methane gas diffusion and adsorption in shale is a slow process of dynamic equilibrium, which can be illustrated by the slope of a curve in \(\hbox {CH}_{4}\) mass variation. The amount of adsorption increases with the pressure increase at the low pressure, and the mass change by gas diffusion will decrease due to the decrease in the compressibility factor of the gas. With the elevated temperature, the gas molecules move faster and then the greater gas diffusion rates make the process duration shorter. The gas diffusion rate decreases with the permeability decrease, and there is a limit of gas diffusion if the permeability is less than \(1.0\,\times \,10^{-15}\, \hbox { m}^{2}\). The results can provide insights for a better understanding of methane diffusion and adsorption in the shale rocks so as to optimize gas production performance of shale gas reservoirs.  相似文献   

12.
海陆过渡相页岩气藏不稳定渗流数学模型   总被引:1,自引:1,他引:0  
海陆过渡相页岩常与煤层和砂岩呈互层状产出, 储层连续性较差、横向变化快、非均质性强, 水力压裂技术是其获得经济产量的关键手段. 然而, 目前缺乏有效的海陆过渡相页岩气藏不稳定渗流数学模型, 对其渗流特征分析及储层参数评价不利. 针对这一问题, 首先建立海陆过渡相页岩气藏压裂直井渗流数学模型, 其次采用径向复合模型来反映强非均质性, 采用Langmuir等温吸附方程来描述气体的解吸和吸附, 分别采用双重孔隙模型和边界元模型模拟天然裂缝和水力裂缝, 建立并求解径向非均质的页岩气藏压裂直井不稳定渗流数学模型, 分析海陆过渡相页岩气藏不稳定渗流特征, 并进行数值模拟验证和模型分析应用. 分析结果表明, 海陆过渡相页岩气藏不稳定渗流特征包括流动早期阶段、双线性流、线性流、内区径向流、页岩气解吸、内外过渡段、外区径向流及边界控制阶段. 将本模型应用在海陆过渡相页岩气试井过程中, 实际资料拟合效果较好, 其研究成果可为同类页岩气藏的压裂评价提供一些理论支撑, 具有较好应用前景.   相似文献   

13.
储层含气量的准确评估是目前制约非常规天然气高效开发的重要因素, 直接法采用损失气估算模型结合解吸曲线估算储层含气量, 但现有损失气估算模型均基于煤层气的常压边界条件和球形颗粒假设, 如美国矿业局提出的USBM方法, 为埋藏深、柱状岩心的页岩气藏含气量的估算带来较大误差. 本文基于扩散理论, 采用时变压力边界条件和柱坐标系求解一维扩散方程获得解析解, 从而提出了新的损失气估算模型, 即变边界分段模型, 该模型能够反演出提钻和解吸两个阶段气体逸散的不同特征. 结果表明: 在提钻阶段, 环境压力不断降低, 岩心内外压差增大, 气体逸散速率加快, 从而是下凸函数; 在解吸阶段, 环境压力恒定, 岩心内压力随气体逸散而下降, 内外压差减小, 气体逸散速率减慢, 因而是上凸函数. 进一步为证明模型的准确性, 基于相似原理在实验室搭建了损失气?解吸气复原实验系统, 采用圆柱状页岩岩心复现提钻过程和解吸过程的气体逸散情况, 得到的实验结果与变边界分段模型吻合, 而已有的USBM方法不能进行准确预测, 验证了本文提出的变边界分段模型正确性. 根据川南地区Y151井现场测试数据, 采用变边界分段模型进行拟合预测, 所得结果良好, 验证了变边界分段模型的适用性.   相似文献   

14.
为了研究瓦斯的爆炸危险性,选取对其影响较大的初始温度和初始压力进行实验研究。运用特殊环境20 L爆炸特性测试系统,对不同初始温度(25~200 ℃)和初始压力(0.1~1.0 MPa)条件下瓦斯的爆炸极限、最大爆炸压力和点火延迟时间进行实验研究。结果表明:高温高压条件使瓦斯的爆炸上限升高、下限降低,爆炸极限范围扩大;随着初始温度升高,瓦斯爆炸的最大爆炸压力逐渐减小;初始温度越高,点火延迟时间越短。通过对实验结果的分析,运用安全原理知识和危险度定义,给出初步评估瓦斯爆炸危险性的方法。  相似文献   

15.
初始压力对多孔介质中气体水合物生成的影响   总被引:4,自引:0,他引:4  
利用自制的一维天然气水合物生成与开采模拟实验系统,实验研究多孔介质中天然气水合物生成时不同初始压力对生成量、生成时间的影响.分别用相同气水比注入、相同注气量不同注水量、相同注水量不同注气量三种方式来控制初始压力.结果表明:在砂粒粒径300μm~500μm,盐水质量浓度2%,系统温度为2℃、初始压力为5MPa~9MPa的条件下进行水合物的等容生成实验时,初始压力越大,生成的水合物量越多,水合物开始生成的时间越早;但初始压力越大,实验系统中水合物生成最终稳定所需的时间越长.本实验系统采用的三种不同的控制初始压力的方式都可以得到上述结果.由此,可以为今后室内进行天然气水合物的生成实验提供科学指导.  相似文献   

16.
邓佳  吕子健  张奇  宋付权  李久江  赵广杰 《力学学报》2021,53(10):2880-2890
利用CO2开采页岩气不仅能够提高页岩气采收率, 还能够节省水资源并且对CO2进行地质封存, 有助于实现页岩气开采过程的碳中和. 富有机质页岩储层纳微米孔隙中气体运移机制不同于常规储层, CO2在储层中具有超临界特性, 致使开采机理复杂, 无法得到CO2开采页岩气微观机理的准确认识, 所以研究CH4, CO2及其二元混合物在页岩储层纳微米孔隙中的吸附及驱替特性对准确评估和高效开采页岩气至关重要. 本文从实验、理论以及模拟方面对页岩储层纳微米孔隙中CH4的吸附特性、CO2/CH4二元混合物竞争吸附特性以及驱替特性进行了综合分析, 对气体在纳微米孔隙中吸附及驱替特性的基础研究及关键问题进行讨论分析并提出了展望. 研究表明CH4在页岩储层中表现为物理吸附, 有机质特征(丰度、成熟度、类型)、孔隙结构、无机矿物组成、温度和压力、含水率对页岩的CH4吸附能力均有一定程度的影响. 在相同条件下, CO2比CH4更易被页岩储层吸附, 在页岩储层中注入CO2可以促进CH4的解吸, 并有利于CO2的地质埋存. 开采方案的部署可采用井网形式的注采方式, 可以通过调整注入井的位置、数量以及CO2注入速率对开采方案进行优化.   相似文献   

17.
Shale can act as an unconventional gas reservoir with low permeability and complex seepage characteristics. Study of the apparent permeability and percolation behavior of shale gas is important in understanding the permeability of shale reservoirs, to evaluate formation damage, to develop gas reservoirs, and to design wells. This study simulated methane percolation at 298.15 K under inlet pressures ranging from 0.2 to 4 MPa and a constant outlet pressure of 0.1 MPa to investigate shale gas percolation behavior and apparent permeability. Five representative shale cores from the Carboniferous Hurleg and Huitoutala formations in the eastern Qaidam Basin, China, were analyzed. Each experiment measured the volume flow rate of methane and the inlet pressure. Pseudopressure approach was used to analyze high-velocity flow in shale samples, and apparent permeability at different pressures was calculated using the traditional method. A nonlinear apparent permeability model that considers diffusion and slippage is established from theory and experimental data fitting, and the shale gas flow characteristics affected by slippage and diffusion are analyzed. The results indicate that the pseudopressure formulation that considers the effect of gas properties on high-velocity flow produces a more accurate linear representation of the experimental data. The apparent gas permeability of shale consists of contributions from Darcy permeability, slippage, and diffusion. The apparent permeability and gas flow behavior in the studied shales strongly depended on pressure. The diffusion contribution increased greatly as pressure decreased from 2 to 0.2 MPa, and the smaller the shale permeability, the greater the relative contribution of diffusion flow. At pressures greater than 2 MPa, slip flow contributes \(\sim \)20% of the total flux, Darcy flow contributes up to 70%, and diffusion makes only a minor contribution. This study provides useful information for future studies of the mechanism of shale gas percolation and the exploration and development of Qaidam Basin shale gas specifically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号