首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Revealing the free radical mechanism by which the anticancer drug tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) induces hypoxia-selective cytotoxicity, is seen as a way forward to develop clinically useful bioreductive drugs against chemo- and radiation-resistant hypoxic tumor cells. Our previous studies point to the formation of an active benzotriazinyl radical following the one-electron reduction of tirapazamine and its elimination of water from the initial reduction intermediate, and have suggested that this species is a cytotoxin. In this paper we have used pulse radiolysis to measure the one-electron reduction potentials of the benzotriazinyl radicals E(B*,H(+)/B) of 30 analogues of tirapazamine as well as the one-electron reduction potentials of their two-electron reduced metabolites, benzotriazine 1-oxides E(B/B*-). The redox dependencies of the back-oxidation of the one-electron reduced benzotriazine 1,4-dioxides by oxygen, their radical prototropic properties and water elimination reactions were found to be tracked in the main by the one-electron reduction potentials of the benzotriazine 1,4-dioxides E(A/A*-). Multiple regression analysis of published aerobic and hypoxic clonogenic cytotoxicity data for the SCCVII murine tumor cell line with the physical chemistry parameters measured in this study, revealed that hypoxic cytotoxicity is dependent on E(B*, H(+)/B) thus providing strong evidence that the benzotriazinyl radicals are the active cytotoxic species in hypoxia, while aerobic cytotoxicity is dependent on E(B/B*-). It is concluded that maximizing the differential ratio between these two controlling parameters, in combination with necessary pharmacological aspects, will lead to more efficacious anticancer bioreductive drugs.  相似文献   

2.
Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is the lead bioreductive drug in clinical trials as an anticancer agent to kill refractory hypoxic cells of solid tumors. It has long been known that, upon metabolic one-electron reduction, tirapazamine induces lethal DNA double strand breaks in hypoxic cells. These strand breaks arise from radical damage to the ribose moiety of DNA, and in this pulse radiolysis and product analysis study we examine mechanistic aspects of the dual function of tirapazamine and analogues in producing radicals of sufficient power to oxidize 2-deoxyribose to form radicals, as well as the ability of the compounds to oxidize the resulting deoxyribose radicals to generate the strand breaks. Both the rate of oxidation of 2-deoxyribose and the radical yield increase with the one-electron reduction potentials of the putative benzotriazinyl radicals formed from the benzotriazine 1,4-dioxides. Subsequent oxidation of the 2-deoxyribose radicals by the benzotriazine 1,4-dioxides and 1-oxides proceeds through adduct formation followed by breakdown to form the radical anions of both species. The yield of the radical anions increases with increasing one-electron reduction potentials of the compounds. We have previously presented evidence that oxidizing benzotriazinyl radicals are formed following one-electron reduction of the benzotriazine 1,4-dioxides. The reactions reported in this work represent the kinetic basis of a short chain reaction leading to increased oxidation of 2-deoxyribose, a process which is dependent on the one-electron reduction potential of the benzotriazinyl radicals that are above a threshold value of ca. 1.24 V.  相似文献   

3.
The mechanism by which a benzotriazine 1,4-dioxide class of anticancer drugs produce oxidizing radicals following their one-electron reduction has been investigated using tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide, 1) and its 6-methoxy (6), 7-dimethylamino (7), and 8-methyl (8) analogues. By measuring the changes in absorption with pH, we found that the radical anions undergo protonation with radical pK(r) values of 6.19 +/- 0.05, 6.10 +/- 0.03, 6.45 +/- 0.04, and 6.60 +/- 0.04, respectively. The one-electron reduced species underwent a first-order reaction, with increased rate constants from 112 +/- 23 s(-)(1) for 1 to 777 +/- 12 s(-)(1)(6), 1120 +/- 29 s(-)(1) (7), and 825 +/- 89 s(-)(1) (8) at pH 7. No overall change in conductance was observed following the one-electron reduction of 6, and 8 at pH 4.5, consistent with the protonation of the radical anions, but a loss in conductance was seen for one-electron reduced 7 because of further protonation of the initially formed radical. This is assigned to the protonation of the dimethylamino group of the radical species, which has a pK(a) of 8.8 +/- 0.3. All conductance changes take place on a time-scale shorter than those of the above first-order reactions, which are not associated with the formation or loss of charged species. The absorption spectra present at the end of the unimolecular reactions were found to be similar to those formed immediately upon the one-electron oxidation of the respective substituted 3-amino-1,2,4-benzotriazine 1-oxides, and it is suggested that common benzotriazinyl radicals are formed by both routes. All these intermediate radicals underwent dismutation to produce final spectra matched by equal contributions of the parent compound and their respective substituted 3-amino-1,2,4-benzotriazine 1-oxides. By establishing redox equilibria between the intermediate radicals formed on the one-electron oxidation of the respective 3-amino-1,2,4-benzotriazine 1-oxides of the compounds and reference compounds, we found the one-electron reduction potential of the oxidizing radicals to range from 0.94 to 1.31 V. The benzotriazinyl radical of tirapazamine was found to oxidize dGMP and 2-deoxyribose with rate constants of (1.4 +/- 0.2) x 10(8) M(-)(1) s(-)(1) and (3.7 +/- 0.5) x 10(6) M(-)(1) s(-)(1), respectively.  相似文献   

4.
Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide), the lead bioreductive drug with selective toxicity for hypoxic cells in tumors, is thought to act by forming an active oxidizing radical of high one-electron reduction potential, E(1), when reduced by reductases. It has a dual mechanism of action, both generating DNA radicals, following its one-electron reduction and subsequently oxidizing these DNA radicals to form labile cations or hydrolyzable lactones through transferring an O atom, resulting in DNA strand breaks. These parallel secondary reactions have been proposed to be also initiated by its two-electron reduced metabolite, the 1-oxide. We have used pulse radiolysis to show that the benzotriazinyl radical of a highly soluble analogue of tirapazamine, the 3-(N,N-dimethyl-1,2-ethanediamine) analogue, is able to oxidize tirapazamine itself. We have found that both tirapazamine and the 1-oxides are in equilibrium with their respective benzotriazinyl radicals, with high concentrations of the more soluble 1-oxide maintaining a high concentration of the more reactive oxidizing radical of tirapazamine. The one-electron reduction potentials, E(1), of the 1-oxides and related compounds have been measured and, together with the E(1) values of tirapazamine and the 2-nitroimidazole radiosensitizer, misonidazole, are shown to predict the published percentages of electron transfer. This radical chemistry study gives an insight into the mechanisms of the potentiation of radical damage, reported for DNA, that underlies the hypoxic cytotoxicity of electron affinic compounds. The E(1) values of the benzotriazinyl radicals of the benzotriazine compounds govern the position of the redox equilibria, which determine the amount of initial radical damage. The E(1) values of the 1,4-dioxides and 1-oxide compounds govern the degree of potentiation of the initial radical damage once formed.  相似文献   

5.
Tandem mass spectrometry methods were used to study the sites of protonation and for identification of 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine), and its metabolites (3-amino-1,2,4-benzotriazine 1-oxide (3), 3-amino-1,2,4-benzotriazine 4-oxide (4), 3-amino-1,2,4-benzotriazine (5), and a related isomer 3-amino-1,2,4-benzotriazine 2-oxide (6). Fragmentation pathways of 3 and 5 indicated the 4-N-atom as the most likely site of protonation. Among the N-oxides studied, the 4-oxide (4) showed the highest degree of protonation at the oxygen atom. The differences in collision-induced dissociation of isomeric protonated 1-, 2- and 4-oxides allowed for their identification by LC/MS/MS. Gas phase and liquid phase protonation of tirapazamine occurred exclusively at the oxygen in the 4-position. A loss of OH radical from these ions (2(+)) resulted in ionized 3. Neutralization-reionization mass spectrometry (NR MS) experiments demonstrated the stability of the neutral analogue of protonated tirapazamine in the gas phase in the micro s time-frame. A significant portion of the neutral tirapazamine radicals (2) dissociated by loss of hydroxyl radical during the NR MS event, which indicates that previously proposed mechanisms for redox-activated DNA damage are reasonable. The activation energy for loss of hydroxyl radical from activated tirapazamine (2) was estimated to be approximately 14 kcal mol(-1). Stable neutral analogues of [3 + H](+) and [5 + H](+) ions were also generated in the course of NR MS experiments. Structures of these radicals were assigned to the molecules having an extra hydrogen atom at one of the ring N-atoms. Quantum chemical calculations of protonated 1, 3, 4 and 5 and the corresponding neutrals were performed to assist in the interpretation of experimental results and to help identify their structures.  相似文献   

6.
The previously prepared 3-methyl-1,2,4-benzotriazine oxide1 is shown to be the 4-oxide 5. Synthesis and structures of other isomeric and related oxides are described. A modification of a previously described synthesis of 1,2,4-benzotriazines produces purer products in higher yields.  相似文献   

7.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

8.
An on-line microdialysis microbore HPLC method is described for the determination of the bioreductive anti-tumor agent, tirapazamine (3-amino-1,2,4-benzotriazine-1,4-di-N-oxide, SR4233, WIN59075, Tirazone, TPZ) and its two major reduced metabolites, 3-amino-1,2,4-benzotriazine-1-N-oxide (SR4317) and 3-amino-1,2,4-benzotriazine (SR4330). Detection limits of 0.003 microM, 0.005 microM and 0.007 microM were obtained for tirapazamine, SR4317 and SR4330, respectively. Linear ranges of 0.011-20 microM, 0.017-20 microM and 0.025-20 microM for tirapazamine, SR4317 and SR4330 permitted quantitative analysis of all three compounds in microdialysis samples. Typical intra-day reproducibilities (n = 7) of 4.1% (tirapazamine), 6.6% (SR4317), 9.9% (SR4317), and 1.8% (tirapazamine), 2.4% (SR4317) and 2.6% (SR4330) were obtained at the 0.12 microM and 1.2 microM levels, respectively. Inter-day reproducibilities (n = 5) of 3.4% (tirapazamine), 1.8% (SR4317), 4.5% (SR4330) and 2.5% (tirapazamine), 2.5% (SR4317) and 1.7% (SR4330) were obtained at the 0.12 microM and 1.2 microM levels, respectively. The use of an on-line microdialysis HPLC system, permitted the determination of tirapazamine, SR4317 and SR4330 in blood and muscle tissue of rats with a high temporal resolution of sampling. The pharmacokinetics of tirapazamine and its metabolites were studied in the muscle and blood of rats previously administered an intraperitoneal dose of tirapazamine.  相似文献   

9.
Palladium-mediated coupling of 3-chloro-1,2,4-benzotriazine 1-oxide with a variety of stannanes in the presence of Pd(PPh3)4 gives 3-alkyl derivatives in good yields. Suzuki reaction of the 3-chloro compound with phenylboronic acids gives 3-aryl-1,2,4-benzotriazine 1-oxides. Oxidation of 1-oxides with trifluoroperacetic acid gives the 1,4-dioxides. This method provides a better route to the potential anti-cancer agents SR 4895 and SR 4941.  相似文献   

10.
Flash vacuum pyrolysis of 3-methylsulfanyl-1,2,4-benzotriazine N-oxide, 3-methylsulfanyl-1,2,4-benzotriazine, and 3-phenyl-1,2,4-benzotriazine are described. The N-oxide derivative underwent deoxygenation between 500 and 600°C, whereas at higher temperatures both methylsulfanyl compounds, besides yielding the same products, also gave benzimidazole formed by an independent mechanism. Transformation of these derivatives between 600 and 750°C led to formation of a complex reaction mixture indicating the radical nature of the processes. The phenyl substituted derivative was studied between 575 and 650°C and afforded benzonitrile and traces of biphenylene.  相似文献   

11.
1-Alkoxy-3,5-dinitrobenzenes were nitrated to give 1-alkoxy-2,3,5-trinitrobenzenes. The reaction of the latter with guanidine affordsN-(2-alkoxy-4,6-dinitrophenyl)guanidines, which undergo cyclization under the action of KOH to form 5-alkoxy-3-amino-7-nitro-1,2,4-benzotriazine 1-oxides. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1650–1652, September, 2000.  相似文献   

12.
The introduction of a 3-alkyl substituent is a key step in the synthesis of 1,2,4-benzotriazine 1,4-dioxide hypoxia-selective anticancer agents, such as SN29751. The Stille reaction of 3-chloro-1,2,4-benzotriazine 1-oxides (BTOs) 5 was inhibited by the presence of electron donating substituents on the benzo ring, thus limiting the range of compounds available for SAR studies. The use of 3-iodo-BTOs 8 did not provide a significant improvement in the yields of 3-ethyl-BTOs 6. Microwave-assisted Stille coupling of chlorides 5 gave dramatically improved yields, which were consistently superior to those from the corresponding iodides 8. The application of microwave-assisted synthesis extended the range of substituted BTOs available for SAR studies and provided an efficient, scalable synthesis of the investigational anticancer agent, SN29751 (1).  相似文献   

13.
The structure of compound C12H15N3, obtained by Perkin and Riley in 1923, through the reduction of cyclohexanone 2-nitrophenylhydrazone, was reexamined. This compound, considered originally as 3,4-cyclotetramethylene-4,5-dihydro-1,2,5-benzotriazepine (I) and later as 2-aminophenylazocyclohexene (II), is now defined through the nmr spectrum and chemical behaviour as cyclohexane-3-spiro-3,4-dihydro-1,2,4-benzotriazine (V). It is formed by spontaneous oxidation of the cyclic form of cyclohexanone 2-aminophenylhydrazone (namely, cyclohexane-3-spiro-1,2,3,4-tetrahydro-1,2,4-benzotriazine) obtained through amino group addition on the hydrazone double bond.  相似文献   

14.
Novel camphor-1,2,4-triazines fused with imidazole 2–3 , thiadiazole 4 , 1,2,4-triazole 7 , pyrimidine 9–13 and 1,3,5-triazine 14 , were synthesized starting from (5R,8S)-3-amino-5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methano-1,2,4-benzotriazine 1 . Evaluation of central nervous system stimulant activity demonstrated that the presence of a N-N group at C-3 position of 1,2,4-benzotriazine will be essential for the activity.  相似文献   

15.
Summary Thiosemicarbazide reacted with 1,2-diaminobenzene to give 1,2-dihydro-3-thioxo-1,2,4-benzotriazine (1) in fairly good yield in a solvent free reaction under microwave irradiation.1 was condensed with prop-2ynyl bromide in the presence of sodium methoxide to afford the corresponding 3-(prop-2-ynylsulfanyl)-1,2,4-benzotriazine (5). Transformation of5 to 3-methylidene-2,3-dihydro-9H-thiazolo[2,3-c][1,2,4]benzotriazine (6) was performed in the presence of a palladium salt.
Regioselektive Anellierung von 3-(prop-2-inylsulfanyl)-1,2,4-benzotriazin zu Thiazolo[2,3-c][1,2,4]benzotriazin
Zusammenfassung Thiosemicarbazid reagierte mit 1,2-Diaminobenzol ohne Lösungsmittel und unter Bestrahlung mit Mikrowellen in guter Ausbeute zu 1,2-Dihydro-3-thioxo-1,2,4-benzotriazin (1), welches in Gegenwart von Natriummethoxid mit Prop-2-inylbromid zum entsprechenden 3-(Prop-2-inylsulfanyl)-1,2,4-benzotriazin (5) kondensiert wurde. Die Umsetzung von5 zu Methyliden-2,3-dihydro-9H-thiazolo[2,3-c] [1,2,4]benzotriazin (6) gelang unter Palladiumkatalyse.
  相似文献   

16.
Starting from the readily available 2-aminobenzhydrols ( 7 ), 3-amino-1,2,4-benzotriazine ( 11 ) and 2-amino-3-pyridinol ( 12 ), novel derivatives of 5-phenyl-5H-imidazo[1,2-a][3,1]benzothiazine-2-carboxylic acid, ethyl ester ( 4 ), imidazo[2,1-c][1,2,4]benzotriazine-2-carboxylic acid, ethyl ester ( 5 ) and 4H-imidazo[2,3-c]pyrido-[2,3-e][1,4]oxazine ( 6 ) were prepared.  相似文献   

17.
3-Alkylthio-4-amino-1,6-dihydro-1,2,4-triazin-5(4H)-ones were synthesized by the reduction of 3-thio-4-amino-1,2,4-triazine-3,5(2.H,4H)-diones and successive S-alkylation. The regiospecific alkylation on the N-1 position or the exo amino group leads to a variety of 1,6-dihydro-1,2,4-triazin-5(4H)-one derivatives. An alternative synthesis of 3-thio-4-amino-1,6-dihydro-1,2,4-triazine-3,5(2H,4H)-diones was accomplished through the cyclization of 1-thiocarbohydrazidoacetamide derivatives.  相似文献   

18.
Summary. In the presence of RuCl3, N-phenylamidrazone underwent oxidative cyclization into 1,4-dihydro-1-phenyl-1,2,4-benzotriazine, the structure of which is established by spectral and X-ray diffraction data.  相似文献   

19.
A novel method for the synthesis of a new series of 5-substituted 1,3-dimethyl pyrazolo[4,3-e][1,2,4]triazines is described. The new synthetic strategy is based on the classical Bischler 1,2,4-benzotriazine synthesis. This approach involves the preparation of 5-hydrazinopyrazole from 5-chloro-1,3-dimethyl-4-nitropyrazole followed by acylation and nitro group reduction to form the corresponding 4-amino-3-(acylhydrazino)pyrazoles. Intramolecular oxidative cyclization of the latter derivatives, using polyphosphoric acid, produced the respective target pyrazolotriazines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号