首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The energy spectra of electrons released in thermal energy (≈ 50 meV) ionizing collisions of He*(21 S, 23 S) with H2 have been measured with high resolution and low background. Based on a detailed data analysis, we report accurate H 2 + (v′) vibrational populationsP(v′) for both He*(21 S)+H2(v′=0–10) and He*(23 S)+H2(v′=0–15) and the spectral shapeS(ε) for the individual vibrational peaks. The vibrational populationsP(v′) are quite similar to the Franck-Condon factorsf v ′0 for unperturbed H2(v″=0)→H 2 + (v′) transitions, but, more in detail, the ratiosP(v′)/f v ′0 show a characteristically differentv′-dependence for He*(23 S), He*(21 S), and HeIα(58.4 nm) ionization. The vibrational level separations in the He*(21 S, 23 S)+H2 spectra agree with those in the HeI photoelectron spectrum to within 1–2 meV. The spectral shapesS(ε) are characteristically different for He*(21 S)+H2 and He*(23 S)+H2, reflecting the respective differences in the entrance channel potentials, as determined previously in ab initio calculations and from scattering experiments.  相似文献   

3.
Time_of_flightmassspectrometer(TOFMS)hasbeenfindinganincreasinglywidevarietyofapplications.Itssensitivity,highanalysisspeed,andlargemassrangemakeitoneofthemostfavorablemassspectrometertechnique.However,thekeyfactorfortheTOFMSisthepulsedionizorthatrestri…  相似文献   

4.
The potential energy surface of benzene (C(6)H(6)) with a He*(2(3)S) atom was obtained by comparison of experimental data in collision-energy-resolved two-dimensional Penning ionization electron spectroscopy with classical trajectory calculations. The ab initio model interaction potentials for C(6)H(6)+He*(2(3)S) were successfully optimized by the overlap expansion method; the model potentials were effectively modified by correction terms proportional to the overlap integrals between orbitals of the interacting system, C(6)H(6) and He*(2(3)S). Classical trajectory calculations with optimized potentials gave excellent agreement with the observed collision-energy dependence of partial ionization cross sections. Important contributions to corrections were found to be due to interactions between unoccupied molecular orbitals and the He*2s orbital. A C(6)H(6) molecule attracts a He*(2(3)S) atom widely at the region where pi electrons distribute, and the interaction of -80 meV (ca. -1.8 kcal/mol) just cover the carbon hexagon. The binding energy of a C(6)H(6) molecule and a He* atom was 107 meV at a distance of 2.40 A on the sixfold axis from the center of a C(6)H(6) molecule, which is similar to that of C(6)H(6)+Li and is much larger than those of the C(6)H(6)+[He,Ne,Ar] systems.  相似文献   

5.
Penning ionization of phenylacetylene and diphenylacetylene upon collision with metastable He*(2(3)S) atoms was studied by collision-energy-/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). On the basis of the collision energy dependence of partial ionization cross-sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the approach of a metastable atom to the target molecule, anisotropy of interaction between the target molecule and He*(2(3)S) was investigated. For the calculations of interaction potential, a Li(2(2)S) atom was used in place of He*(2(3)S) metastable atom because of its well-known interaction behavior with various targets. The results indicate that attractive potentials localize in the pi regions of the phenyl groups as well as in the pi-conjugated regions of the acetylene group. Although similar attractive interactions were also found by the observation of CEDPICS for ionization of all pi MOs localized at the C[triple bond]C bond, the in-plane regions have repulsive potentials. Rotation of the phenyl groups about the C[triple bond]C bond can be observed for diphenylacetylene because of a low torsion barrier. So the examination of measured PIES was performed taking into consideration the change of ionization energies for conjugated molecular orbitals.  相似文献   

6.
7.
Vibrational population factors for the nascent Penning ions HD+ (v′)(… He) and energy of the corresponding Penning electrons are calculated for the ionization event He(23S)(SINGLEBOND)HD(v′ = 0) → [He … HD+(v′)] + e taking place at a range of the He*(SINGLEBOND)HD separations and orientations accessible by the system during thermal energy collisions. The vibrational population factors are obtained from the local widths of the He(23S)(SINGLEBOND)HD(v′ = 0, N) state with respect to autoionization to HD+(… He) in its v′th vibrational level. The initial overall picture of the autoionization event is consistent with the He(23S)(SINGLEBOND)H2(v′ = 0) one. On the other hand, the vibrational population factors are different from the approximate average populations used in initial model theoretical considerations about the Penning processes in the system. Variation of the calculated considerations about the Penning processes in the system. Variation of the calculated quantities with changes in the He*(SINGLEBOND)HD separations and orientations is found to be smooth enough to guarantee that the present data might form a sound basis for construction of analytical representations of the corresponding 2D surfaces and for future study of the dynamics of the collision system. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
We present a detailed theoretical treatment of single-electron transfer between He2+ and H?. The total cross section is calculated using stationary molecular states which are appropriate in the energy range covered by the experiments (between 0.5 and 2250 eV in the centre of mass frame). We use an expansion on a two-electron basis built with one-electron diatomic molecule (OEDM) orbitals and including the common translation factor of Errea et al. All coupling terms are calculated explicitly. Because of the small binding energy of H? compared to that of the ground state of He+, capture occurs into highly excited states of He+. Results obtained with a straight-line quasiclassical calculation are in good agreement with the experimental data. At low energy, He+ (n=5) +H(1s) is the dominant capture channel; at higher energy, the He+ (n=4) + H(1s) channel becomes important. The rise in the cross section below 6 eV can be attributed to the Coulomb attraction in the incoming channel. To account for this effect, a fully quantal calculation has been performed. The agreement with the low-energy measurements is then excellent.  相似文献   

9.
Penning ionization of formic acid (HCOOH), acetic acid (CH3COOH), and methyl formate (HCOOCH3) upon collision with metastable He*(2(3)S) atoms was studied by collision-energy/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). Anisotropy of interaction between the target molecule and He*(2(3)S) was investigated based on the collision energy dependence of partial ionization cross sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the access of a metastable atom to the target molecule. For the interaction potential calculations, a Li atom was used in place of He*(2(3)S) metastable atom because of its well-known similarity in interaction with targets. The results indicate that in the studied collision energy range the attractive potential localizes around the oxygen atoms and that the potential well at the carbonyl oxygen atom is at least twice as much as that at the hydroxyl oxygen. Moreover we can notice that attractive potential is highly anisotropic. Repulsive interactions can be found around carbon atoms and the methyl group.  相似文献   

10.
Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b(2) and 10a(1) orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of -5°, -10°, and -15°. The ejected electron angular range encompasses both the binary and recoil peaks in the triple differential cross section. Corresponding theoretical calculations have been performed using the molecular 3-body distorted wave model and are in reasonably good agreement with the present experiment.  相似文献   

11.
The collision-induced process He + H(2)(+)(v = 0-2; j = 0-3) → He + H + H(+) has been investigated using a time-dependent quantum mechanical wave packet approach, within the centrifugal sudden approximation. The exchange reaction He + H(2)(+) → HeH(+) + H, which has a lower threshold, dominates over the dissociation process over the entire energy range considered in this study. The reaction cross section for both the exchange and dissociation channels and the branching ratio between the two channels have been computed on the McLaughlin-Thompson-Joseph-Sathyamurthy potential-energy surface and compared with the available experimental and quasiclassical trajectory results.  相似文献   

12.
Computer-assisted optimization of chromatographic separations requires finding the numerical solution of the Equilibrium-Dispersive (ED) mass balance equation. Furthermore, the competitive adsorption isotherms needed for optimization are often estimated numerically using the inverse method that also solves the ED equations. This means that the accuracy of the estimated adsorption isotherm parameters explicitly depends on the numerical accuracy of the algorithm that is used to solve the ED equations. The fast and commonly used algorithm for this purpose, the Rouchon Finite Difference (RFD) algorithm, has often been reported not to be able to accurately solve the ED equations for all practical preparative experimental conditions, but its limitations has never been completely and systematically investigated. In this study, we thoroughly investigate three different algorithms used to solve the ED equations: the RFD algorithm, the Orthogonal Collocation on Finite Elements (OCFE) method and a Central Difference Method (CDM) algorithm, both for increased theoretical understanding and for real cases of industrial interest. We identified discrepancies between the conventional RFD algorithm and the more accurate OCFE and CDM algorithms for several conditions, such as low efficiency, increasing number of simulated components and components present at different concentrations. Given high enough efficiency, we experimentally demonstrate good prediction of experimental data of a quaternary separation problem using either algorithm, but better prediction using OCFE/CDM for a binary low efficiency separation problem or separations when the compounds have different efficiency. Our conclusion is to use the RFD algorithm with caution when such conditions are present and that the rule of thumb that the number of theoretical plates should be greater than 1000 for application of the RFD algorithm is underestimated in many cases.  相似文献   

13.
Electron impact mass spectra have been recorded for helium nanodroplets containing water clusters. In addition to identification of both H(+)(H(2)O)(n) and (H(2)O)(n)(+) ions in the gas phase, additional peaks are observed which are assigned to He(H(2)O)(n)(+) clusters for up to n=27. No clusters are detected with more than one helium atom attached. The interpretation of these findings is that quenching of (H(2)O)(n)(+) by the surrounding helium can cool the cluster to the point where not only is fragmentation to H(+)(H(2)O)(m) (where m < or = n-1) avoided, but also, in some cases, a helium atom can remain attached to the cluster ion as it escapes into the gas phase. Ab initio calculations suggest that the first step after ionization is the rapid formation of distinct H(3)O(+) and OH units within the (H(2)O)(n)(+) cluster. To explain the formation and survival of He(H(2)O)(n)(+) clusters through to detection, the H(3)O(+) is assumed to be located at the surface of the cluster with a dangling O-H bond to which a single helium atom can attach via a charge-induced dipole interaction. This study suggests that, like H(+)(H(2)O)(n) ions, the preferential location for the positive charge in large (H(2)O)(n)(+) clusters is on the surface rather than as a solvated ion in the interior of the cluster.  相似文献   

14.
The potential energy curves and the coupling matrix elements of the11 and1 states involved in the collision of the B3+(1s 2) multicharged ion on a He target have been calculated by means of an ab initio method with configuration interaction. The total and partial capture cross-sections have been determined, using a semi-classical method. The results are in good agreement with experiment, exhibiting a strong influence of rotational coupling even at low energies.  相似文献   

15.
The mass spectra of cyclo-(Gly-Leu), cyclo-(Gly-Tyr), cyclo-(Ala-Tyr), cyclo-(Leu-Tyr), cyclo-(Val-Phe) and cyclo-(Leu-Phe) are presented. The use of high resolution mass measurements and metastable analysis allows the proposal of some general fragmentation mechanisms. The dominant features in the mass spectra of 2,5-diketopiperazines are fragments corresponding to cleavages of sidechains and the rupture of the piperazine-2,5-dione ring. The characteristic fragments may be used in the identification of any 2,5-diketopiperazines by mass spectrometry.  相似文献   

16.
Several 1-X-sabstitirted-3-methoxy-4-trideuteromethoxybenzens were synthesized and their electron impact ionization mass spectra were measured with an ionizing energy of 20 eV. From the peak intensity ratio of [M ? CD3 ] and [M ? CH3] the fragmentation-directing ability of the substituent X was evaluated. The most powerful group was found to be NH2, which expelled a methoxy methyl group only from its para position. The CH3 group and four halogen atoms, F, Cl, Br and I, exerted a moderate effect Electron-withdrawing groups such as NO2, CHO and CN had only a little influence on the fragmentation selectivity. These results were interpreted in terms of the effect of X on the distribution of both the unpaired electron and the positive charge in the molecular ion.  相似文献   

17.
The extent of substituent influence on the vertical electron affinities (EAs) and ionization energies (IEs) of 43 substituted tria-, penta-, and heptafulvenes was examined computationally at the OVGF/6-311G(d)//B3LYP/6-311G(d) level of theory and compared with those of tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) as representing strong electron-acceptor and -donor compounds, respectively. The substituents X at the exocyclic positions of the fulvenes were either NH(2), H, or CN, while the substituents Y at the ring positions were H, Cl, F, CN, or NH(2). The variations of the EAs and IEs were rationalized by qualitative arguments based on frontier orbital symmetries for the different fulvene classes with either X or Y being constant. The minimum and maximum values found for the calculated EAs of the tria-, penta-, and heptafulvenes were 0.51-2.05, 0.24-3.63, and 0.53-3.14 eV, respectively, and for the IEs 5.27-9.96, 7.07-10.31, and 6.35-10.59 eV, respectively. Two of the investigated fulvenes outperform TCNQ (calcd EA = 2.63 eV) and one outperforms TTF (calcd IE = 6.25 eV) with regard to acceptor and donor abilities, respectively. We also evaluated the properties of bis(fulvene)s, i.e., compounds composed of a donor-type heptafulvene fused with an acceptor-type pentafulvene, and it was revealed that these bis(fulvene)s can be designed so that the IE and EA of the two separate fulvene segments are retained, potentially allowing for the design of compact donor-acceptor dyads.  相似文献   

18.
Electron impact mass spectrometry of an imido-sulfite 5,6-benzo-2-imino-N-(2,4,6-trichlorophenyl)-1,3-dioxa-2-thiacycloheptane shows an intense fragment ion corresponding to the expulsion of SO2H from the molecular ion. A mechanism that requires a rearrangement of the molecular ion is proposed. Structural elucidation of the [M? SO2H]+ ion was obtained by recording its metastable ion and collisional activation spectra. Comparison of these spectra with similar spectra recorded from a precursor ion of known structure demonstrated that they were identical. Thus, the results support the proposed structure which derives from the expulsion of SO2H from the molecular ion of the compound 5,6-benzo-2-imino-N-(2,4,6-trichlorophenyl)-1,3-dioxa-2-thiacycloheptane.  相似文献   

19.
The production of H 3 + ions resulting from single collisions of mass-selected ionic hydrogen clusters, H n + (n=9, 25, 31), with helium at high velocity (1.55 times the Bohr velocity) has been studied. A strong double H 3 + ion production resulting from one incident cluster is observed. Moreover, evidence for a triple H 3 + fragment production is presented forn=25 and 31. Thus, in this energy range, the collision gives rise to multifragmentation processes. The formation of H 3 + ions takes place in the fragmentation of the multicharged cluster resulting from the collision.  相似文献   

20.
The selective laser excitation and induced fluorescence observation technique has been used to study rotationally inelastic collisions of I2*(B 0u+, υ = 15,j) with I2, 3He, 4He, Ne, Ar, H2 and D2. For each collision partner, several initial rotational levels ranging from ji = 12 up to ji = 146 have been excited. For purely rotational transfer within the υ = 15 level, our data are perfectly consistent with energy sudden (eventually corrected) scaling laws. Thus, any thermally averaged rate constant, k(jijf), can be expressed as a function of the basis rate constants k(l → 0). Furthermore, these k(l → 0) are found to follow simple empirical fitting laws. Consequently any k(jijf) can be predicted given a set of two or three fitting parameters. Collisions with relatively heavy particles (I2, Ar and Ne) are well described by using the inverse power fitting law k(l → 0) = b[l(l+1)], where b = 1.7, 1.2 and 1.2×10?10 cm3 s?1 and γ = 1.08, 1.02 and 1.17 for I2*-Ne, I2*-Ar and I2*-I2 collisions respectively. For collisions with light particles (3He, 4He, H2 and D2), k(l → 0) shows a sharp decrease with l which can be accounted for by a hybrid power-exponential fitting law k(l → 0) = b[l(l+1)] exp[-l(l+1)/l* (l*+1)], where b = 0.84, 0.71, 2.77 and 2.78×10?10 cm3 s?1l+ = 20.6, 23.1, 18.8 and 31.4, and γ = 0.66, 0.66, 0.78 and 0.91 for I2*-3He, I2*-He, I2*-H2 and I2*-D2 collisions, respectively. We confirm that the rotational transfer dynamics in heavy molecules is mainly governed by angular momentum exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号