首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the polarized IR spectra of the hydrogen-bonded molecular crystals of 2-hydroxybenzothiazole (HBT) and 2-mercaptobenzothiazole (MBT). The crystal structure of 2-hydroxybenzothiazole was determined by X-ray diffraction. The polarized spectra of the crystals were measured, in the frequency ranges of the νN-H and νN-D bands, at room temperature, and at 77 K. In both systems an extremely strong H/D isotopic effect in the spectra was observed, involving reduction of the well-developed νN-H band fine structure to a single prominent νN-D line only. The two νN-H bands were also shown to exhibit almost identical properties, band shapes, temperature and dichroic properties included. The spectra were quantitatively reconstituted, along with the strong isotopic effect, when calculated using the ‘strong-coupling’ theory, assuming the centrosymmetric dimers of HBT or MBT to be the structural units responsible for the crystalline spectral properties. The similarity of the spectra of the two crystalline systems was considered to be a result of longer-distance couplings between the proton vibrations in the dimers, via the aromatic ring electrons. When investigating the ‘residual’ νN-H band shapes for crystals isotopically diluted by deuterium, we observed some ‘self-organization’ effects in the spectra, indicating the energetically favored presence of two identical hydrogen isotopes in each hydrogen bond dimer.  相似文献   

2.
The large structural tolerance of I–III–VI group quantum dots (QDs) to off-stoichiometry allows their photoluminescence properties to be adjusted via doping, thereby enabling application in different fields. However, the photophysical processes underlying their photoluminescence mechanism remain significantly unknown. In particular, the transition channels of CuInSe2 QDs, which are altered by intrinsic and extrinsic intragap states, remain poorly reported. Herein, we investigated the photophysical processes associated with intragap states via electrochemical and optical techniques by using copper deficient Cu−In−Se QDs as well as Zn doped Cu−In−Se QDs. When the Cu/In molar ratios of Cu−In−Se QDs increased from 0.3 : 1 to 0.9 : 1, the photoluminescence spectra displayed a red-shift from 700 nm to 1050 nm. Although there was a blue-shift after the introduction of Zn2+ dopants in Cu−In−Se QDs, a significant red-shift occurred (from 660 nm to 760 nm) when the Zn/Cu molar ratios decreased from 0.7 : 0.3 to 0.3 : 0.7. The Gaussian deconvolution results of the photoluminescence spectra and the band gap derived from absorption spectra by fitting supported the fact that the optical transition channels are dependent on the Cu/In and Zn/Cu molar ratios. After the introduction of the Zn2+ ions, the alloyed-resultant blue-shift of the emission spectra was observed, primarily due to the enlarged band gap; however, the radiative recombination of prominent intrinsic intragap states is still observed; and only a small proportion of the band-edge exciton undergoes recombination for the sample with low Zn content. Cyclic voltammetry measurements revealed well-defined extrinsic ZnCu intragap states (Zn substitution on Cu sites) and intrinsic Cux (x= 1+/2+) states in the band gap. The results presented here provide a better understanding of the varying effects of dopant on photoluminescence in terms of I–III–VI group QDs.  相似文献   

3.
Structural, optical, and photovoltaic properties of copper-oxide (CuxO) thin films formed by using a sol–gel method were investigated. X-ray diffraction patterns showed that the CuxO films prepared utilizing Cu(I) acetate or Cu(II) acetate and annealed under ambient atmosphere at various temperatures were polycrystalline with two phases, Cu2O and Cu64O. Transmittance spectra showed that the energy band gaps of the CuxO thin films formed by using Cu(II) acetate were smaller than those formed by using Cu(I) acetate. Current–voltage results showed that the power conversion efficiencies of the inverted polymer solar cells utilizing the CuxO interlayer formed by using Cu(II) acetate were better than those utilizing the CuxO interlayer formed by using Cu(I) acetate due to the multiple band gaps of the Cu(II) acetate.  相似文献   

4.
The crystal and molecular structure of a polymeric Cu(II)-orotate complex, [Cu(μ-HOr)(H2O)2]n, has been reinvestigated by single crystal X-ray diffraction. It is shown that several synergistic interactions: two axial Cu-O interactions; intramolecular and intermolecular hydrogen bonds; and π-π stacking between the uracil rings contribute to the stability of the crystal structure. The Raman and FT-IR spectra of the title complex are reported for the first time. Comprehensive theoretical studies have been performed by using three unrestricted DFT methods: B3LYP; and the recently developed M06, and M05-2X density functionals. Clear-cut assignments of all the bands in the vibrational spectra have been made on the basis of the calculated potential energy distribution, PED. The very strong Raman band at 1219 cm−1 is diagnostic for the N1-deprotonation of the uracil ring and formation of the copper-nitrogen bond, in this complex. The Cu-O (carboxylate) stretching vibration is observed at 287 cm−1 in the IR spectrum, while the Cu-N (U ring) stretching vibration is assigned to the strong Raman band at 263 cm−1. The molecular structure and vibrational spectra (frequencies and intensities) calculated by the M06 functional method are very similar to the results obtained by the B3LYP method, but M06 performs better than B3LYP in calculations of the geometrical parameters and vibrational frequencies of the interligand O-H?O hydrogen bonding. Unfortunately, the M05-2X method seriously overestimates the strength of interligand hydrogen bond.  相似文献   

5.
Transition metal complexes with ligands based on dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been synthesized. As metal fragments the [Ru(bpy)2]+, Re(CO)3Cl and the [Cu(PPh3)2]+ moieties have been used. The complexes containing amino- or bis(bromomethyl) substituted dppz ligands can be used for fullerene-based donor-bridge-acceptor dyads. The electronic absorption spectra of these complexes and of the dppz ligands were investigated. The dppz ligands show strong absorptions in the 300 and 390 nm region. An additional absorption band in the visible region (∼440 nm) is observed for the amino-substituted dppz-ligands. Ruthenium complexes exhibited broad absorption bands at 350-500 nm arising from intraligand-based transitions and the MLCT transition. MLCT transitions of the Re(I) and Cu(I) complexes are observed as shoulders of the stronger ligand-based absorption band tailing out to 400-500 nm. The electrochemically active complexes and ligands were studied by cyclic voltammetry and square-wave voltammetry. All ligands show one first reversible one-electron reduction located at the phenazine portion. These reductions are shifted to more positive redox potentials upon complexation. Oxidation potentials for reversible processes could be determined for the Ru2+/Ru3+ couple. For rhenium(I) and copper(I) complexes one irreversible oxidation process is observed.  相似文献   

6.
Polarized reflection spectra of the first singlet transition of the α-crystalline form of 9,10-dichloroanthracene are reported. Crystal faces (001), (011) and (010) were examined in spectral range 450 to 350 nm at two temperatures, 5 K and 300 K. Two systems of transitions were observed. The first system is assigned to neutral excitons. Spectral similarities with unsubstituted anthracene and arguments based on the one-dimensional stacking of molecules are used to construct a model of the exciten band structures. The M-polarized ππ* molecular transition gives rise to a four branch band with two allowed transitions. The 0-0b (Ag → Au) transition lies 50–100 cm?1 above the bottom of the exciton band and the 0-0c′ (Ag → Bu) transition lies at the top of the band. In the reflection spectrum the Davydov splitting c′b for transverse excitons is 210 cm?1. The exciton band of the 00 molecular transition is not isolated but overlaps the two-particle manifold of the 0–1 vibronic transition. As a result of the 0–1c transition is unexpectedly strong in the spectra of the (010) face. The second system is polarized along the stack-axis a and starts 2500 cm?1 above the first system. It is tentatively assigned as |a(Ag → Bu) charge transfer exciton transition in agreement with earlier observations.  相似文献   

7.
Electronic and vibrational spectra of mimetite, arsenian pyromorphite and hedyphane minerals have been analysed and the spectra related to the mimetite and arsenian pyromorphite and hedyphane mineral structure. The chief spectral feature in the electronic spectra at ∼10 000 cm−1 (1.00 μm) with variable band position and intensity results from the ferrous ion. The splitting of Fe(II) band is large in mimetites with a separation of 1415 cm−1. An additional band shown by arsenian pyromorphite at 10 735 cm−1 (0.93 μm) is assigned to Cu(II) dd-transition. The substitution of Fe(II) causes a blue shift for Cu(II) band in mimetites and the intensity of this band is enhanced at ∼11 140 cm−1 (0.90 μm). The change in colour from brown to orange-yellow relates to the amount of Cu and/or Fe impurities in the mimetite minerals.  相似文献   

8.
Nd-doped and Nd, Cu co-doped ZnO nanoparticles (Zn0.96?xNd0.04CuxO, x = 0, 0.05, 0.1 and 0.15) were synthesized by sol–gel method. The structural and optical properties of the samples were investigated by X-ray diffraction (XRD) and UV–visible photo-spectrometer. The synthesized nanoparticles have different microstructure without changing a hexagonal wurtzite structure. CuO phase was noticed in XRD spectra at 38.73° after Cu = 5 % which was formed from remaining un-reacted Cu2+ ions. The average crystal size was gradually increased from Cu = 0 % (17 nm) to 15 % (17.6 nm) having lowest value (16.7 nm) at Cu = 5 %. The change in lattice parameters confirmed the substitution of Cu in Zn–Nd–O lattice. The observed constant c/a ratio revealed that there was no change in hexagonal wurtzite structure by Cu-doping. The energy dispersive X-ray spectra confirmed the presence of appropriate amount of Nd and Cu in Zn–O lattice. The optical absorption was increased gradually from Cu = 0–10 % and showed maximum at Cu = 10 % due to the presence of more nucleation centres and defect states. The defects related green band between 487 and 493 nm was due to the oxygen vacancies and intrinsic defects. The higher transmittance (≈ 90 %) noticed at Cu = 15 % leads to the industrial applications. The observed blue shift in energy gap from 3.49 eV (Cu = 0 %) to 3.65 eV (Cu = 10 %) and the red shift from Cu = 10 % (3.65 eV) to Cu = 15 % (3.61 eV) can be explained by the Burstein–Moss effect. Presence of chemical bonding was confirmed by Fourier transform infrared spectra.  相似文献   

9.
The electronic energy structure (EES) of the valence band in tetragonal TiCu and Ti2Cu was studied experimentally and theoretically. The experimental study of valence band EES was carried out by X-ray photoelectron spectroscopy (XPS). The calculations were performed in terms of the cluster version of multiple scattering theory in a self-consistent field approximation. The results are compared with X-ray emission spectroscopy data available in the literature. The density of state curves agree well with spectroscopic data. The major contribution to XPS is from the copper d-states. The specifics of chemical bonding in the compounds leading to the observed changes in the shape of the valence band X-ray photoelectron spectra are discussed.  相似文献   

10.
郭雷  胡舸*  张胜涛 《物理化学学报》2012,28(12):2845-2851
采用基于密度泛函理论框架下的第一性原理平面波超软雁势方法, 对ZnSe闪锌矿结构本体、掺入p型杂质Cu(Zn0.875Cu0.125Se)及Zn空位(Zn0.875Se)超晶胞进行结构优化处理. 计算并详细分析了缺陷体系的形成能和三种体系下ZnSe材料的态密度、能带结构、集居数、介电和吸收光谱. 结果表明: 在Zn空位与Cu掺杂ZnSe体系中, 由于空位及杂质能级的引入, 禁带宽度有所减小, 吸收光谱产生红移; 单空位缺陷结构不易形成, Zn0.875Se结构不稳定, Cu掺杂ZnSe结构相对更稳定.  相似文献   

11.
The spin-polarized discrete variational Xa method is used to calculate clusters that model the electronic structures of CuO, La2CuO4, and Nd2CuO4. It, is shown that in each of the compounds the unoccupied portion of the valence band involves mainly the O2p states, the contributions from the Cu3d orbitals being significantly smaller. The effects of the nature of holes in the valence band and of the structure of the close environment of copper on the low-energy CuK spectra and the X-ray photoelectron spectra of the above systems are discussed. Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences. Translated fromZhumal Struktumoi Khimii, Vol. 36, No. 4, pp. 636–643, July–August., 1995. Translated by I. Izvekova  相似文献   

12.
Copper monoxide (CuO) was successfully obtained by microwave-assisted hydrothermal method, using different conditions—in a solution without base, in a solution alkalinized with NaOH or with NH4OH. The powders were analyzed by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, UV–Visible spectroscopy, and scanning electronic microscopy. XRD results showed that CuO was obtained with monoclinic structure and without secondary phases. Thermal analysis and infrared spectra indicated the presence of acetate groups on the powder surface. TG curves also showed a mass gain assigned to the Cu(I) oxidation indicating that a reduction possibly occurred during synthesis. The high and broad absorption band in the UV–Vis spectroscopy from 250 to 750 nm indicated the coexistence of Cu(II) and Cu(I), confirming the Cu(II) reduction, inside the CuO lattice. It was also possible to confirm the Cu(II) reduction by a displacement of the Me–O vibration bands observed in the IR spectra at around 500 cm−1.  相似文献   

13.
Nanoscale Lu2O3:Eu powders were prepared by solution combustion synthesis. X-ray diffraction (XRD), high-resolution electronic microscope (HREM), Fourier transform infrared spectroscopy (FT-IR), excitation and emission spectra, as well as fluorescent decay curves were measured to characterize the structure and luminescent properties of the samples. The results show that the compound of composition Lu2O3 crystallizes in pure cubic structure. By changing the ratio of glycine to nitrate in the combustion process, the particle size varies from 40 nm to less than 5 nm. The emission and excitation spectra strongly depend on the particle size of the samples. Novel emission band, red-shift of charge transfer band (CTB) and shortening of lifetime were observed in nanoscale samples.  相似文献   

14.
The reaction of Cu(OH)2 and 2-hydrazino-2-imidazoline hydrobromide surprisingly resulted in complex compound where Cu(II) ions are chelated by a new ligand, namely bisimidazoline (biz). As has been found in the X-ray analysis, the [Cu(biz)2]2+ cations are accompanied by [Cu2Br4]2− anions, which makes the whole compound of metal-mixed-valency type. Both ions are centrosymmetric and quasi-planar. The Cu(II) coordination environment is a rectangle with almost equal Cu–N bond lengths (1.984(3), 1.987(3) Å). The electrostatic interaction of both complex ions is strengthened by two strong N–H···Br and four weaker (C–H···Br, C–H···N) hydrogen bonds. The relatively simple IR and Raman spectra were interpreted with help of quantum calculations carried out at the B3LYP/LanL2DZ level. The characterization of computed normal vibrations and correlating observed bands is given in terms of approximate D2h symmetry. The most intense band resulting from the Cu–N stretching vibration (B3u) was located at 342 cm−1, by 63Cu and 65Cu isotope substitution. The chemical reactions leading to the formation of presented compound are also proposed.  相似文献   

15.
《Chemical physics letters》1987,140(4):427-433
Highly excited states of benzene were observed by two-color fluorescence dip and ion dip spectroscopy applied to the jet-cooled molecule. Three band systems and a broad absorption were found in the energy region from 56000 to 68000 cm−1. The broad absorption was assigned to the 1E2g valence state. The band systems with the 000 bands at 60776, 62971 and 67402 cm−1 were identified to be the 3d2, 3d1 and 4d2 Rydberg states, respectively.  相似文献   

16.
The inner filter effects in synchronous fluorescence spectra (Δλ = 60 nm) of sedimentary humic substances from a salt marsh were studied. Accordingly to their type and the influence of plant colonization, these humic substances have different spectral features and the inner filter effects act in a different manner. The fluorescence spectra of the humic substances from sediments with colonizing plants have a protein like band (λexc = 280 nm) which is strongly affected by primary and secondary inner filter effects. These effects were also observed for the bands situated at longer wavelengths, i.e., at λexc = 350 nm and λex = 454 nm for the fulvic acids (FA) and humic acids (HA), respectively. However, they are more important for the band at 280 nm, causing spectral distortions which can be clearly seen when the spectra of solutions 40 mg L−1 of different samples (Dissolved Organic Carbon – DOC ∼ 20 mg L−1) are compared with and without correction of the inner filter effects. The importance of the spectral distortions caused by inner filter effects has been demonstrated in solutions containing a mixture of model compounds which represent the fluorophores detected in the spectra of sedimentary humic samples. The effectiveness of the mathematical correction of the inner filter effects in the spectra of those solutions and of solutions of sedimentary humic substances was studied. It was observed that inner filter effects in the sedimentary humic substances spectra can be mathematically corrected, allowing to obtain a linear relationship between the fluorescence intensity and humic substances concentration and preventing distortions at concentrations as high as 50 mg L−1 which otherwise would obscure the protein like band.  相似文献   

17.
BaMoO4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 °C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 °C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba2+ and electronic transitions within MoO2−4, respectively. The optical band gaps of BaMoO4 were 3.38 and 2.19 eV, for crystalline (600 °C/2 h) and amorphous (200 °C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

18.
The BaMoO4 nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO4 powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO4 at 300 °C was disordered. At 400 °C and higher temperature, BaMoO4 crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 °C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 °C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO4 nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO4 nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

19.
Near-infrared emissions of the b0+ → X10+, X21 band systems of TeSe have been observed in a discharge flow system. Analysis of the spectra yielded Te values of the X21 and b0+ states of 1235 ± 5 cm?1 and 8794 ± 5 cm?1, respectively, and a vibrational spacing in the b0+ state of ωe(b) = 294 ± 3 cm?1.  相似文献   

20.
Zn0.96?xFe0.04CuxO (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) nanopowders have been synthesized by sol–gel method. The synthesized samples have been characterized by powder X-ray diffraction, energy dispersive X-ray spectra, X-ray photoelectron spectroscopy, UV–visible spectrophotometer and Fourier transform infrared spectroscopy. The XRD measurement reveals that the prepared nanopowders have different microstructure without changing a hexagonal wurtzite structure. The calculated average crystalline size increases from 20.9 to 22.1 nm for x = 0 to 0.02 then gradually decreases to 18.2 nm for x = 0.10 which were confirmed by SEM and TEM micrographs. The change in lattice parameters, micro-strain, and shift of X-ray diffraction peaks towards lower angles and increase of energy gap reveal the substitution of Cu2+ ions into Zn–Fe–O matrix. X-ray photoelectron spectroscopy study described the increase of oxygen vacancies with increase of Cu concentrations, which was found to enhance the green emission. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra. Photoluminescence spectra of Zn0.96?xFe0.04CuxO system shows that the blue shift in NBE ultraviolet emission from 389 to 369 nm and the same blue shift in green band emission from 552 to 535 nm with enhancing intensity confirms the substitution of Cu into the Zn–Fe–O lattice. Cu-doped Zn0.96?xFe0.04CuxO system is appreciable for the fabrication of nano-optoelectronic devices like tunable light emitting diode in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号