首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new concept is proposed for the paramagnetic metal insulator transition in the layer perovskite Ca2-xSrxRuO4. Whereas the pure Sr compound is metallic up to large Coulomb energies due to strong orbital fluctuations, structural changes induced by doping with Ca give rise to an interorbital charge transfer which makes the material extremely sensitive to local correlations. Using dynamical mean field theory based on finite temperature multiband exact diagonalization, it is shown that the combination of crystal field splitting and on-site Coulomb interactions leads to complete filling of the d(xy) band and to a Mott transition in the half-filled d(xz,yz) bands.  相似文献   

3.
A theory of infrared absorption in amorphous silicon based on local bonding principles is extended to include contributions from dipole moments due to phonon-induced bond angle fluctuations. When applied to a realistic network model, the extended theory produces excellent agreement with experiment. the results indicate that local charge transfer in amorphous silicon is mainly due to bond angle distortions.  相似文献   

4.
Effects of nucleon polarization on the nuclear charge operator have been evaluated in a constituent quark model. At momentum transfer q ≈ 4 fm?1 monopole, dipole and quadrupole excitations are of equal importance. In a harmonic oscillator model for 3He all multipolarities give negative contributions, leading to an overall contribution comparable to the relativistic pair effect. The influence of realistic wave functions, coupling constants and off-shell form factors is discussed.  相似文献   

5.
The ABN ?1 chain is a system that consists of repeating a unit cell withN siteswhere between the A and B sites there is an energy difference ofλ. Weconsidered bosons in these special lattices and took into account the kinetic energy, thelocal two-body interaction, and the inhomogenous local energy in the Hamiltonian. We foundthe charge density wave (CDW) and superfluid and Mott insulator phases, and constructedthe phase diagram for N =2 and 3 atthe thermodynamic limit. The system exhibited insulator phases for densitiesρ =α/N, with α being an integer. Weobtained that superfluid regions separate the insulator phases for densities larger thanone. For any N value, we found that for integer densitiesρ, thesystem exhibits ρ +1 insulator phases, a Mott insulator phase, and ρ CDW phases. Fornon-integer densities larger than one, several CDW phases appear.  相似文献   

6.
Fluorescence of 10,10′-dibromo, 9,9′-bianthryl (DBrBA) in solvents of different polarities (n-hexane, dibutyl ether, tetrahydrofuran, and acetone) has been investigated as a function of temperature. Changing of the solvent and variation of temperature modifies the ratio of local (LE) and charge transfer (CT) fluorescence quantum yields. From the basic fluorescence data (quantum yields, lifetimes, ratio of CT to LE fluorescence quantum yields) the temperature-dependent equilibrium constants for the charge transfer process in the excited singlet state were calculated and discussed on the basis of the modern electron transfer theories. It has been found that the intersystem crossing in DBrBA in nonpolar n-hexane, leading to the population of the lowest triplet state, proceeds via the third triplet state. It has been confirmed by the fluorescence measurements and quantum mechanical calculations. Surprisingly, the experimentally obtained intersystem crossing rate constants are very weakly dependent on temperature. Thus, the electron transfer reaction leading to the population of the molecular triplet state is probably an adiabatic reaction with a rate constant controlled by the dielectric relaxation of the solvent.  相似文献   

7.
8.
In this report, we demonstrate scanning tunneling microscopy and spectroscopy on thin films of lauryl amine (LAM) and octadecane thiol (ODT) protected gold nanoparticles. We show that the zero current in the I-V curves (measure of Coulomb blockade (CB) of the nanoparticles) depends on the properties of the spacer molecule. In both the cases the gap voltage and the tunneling current at which the images are obtained are quite different which is further confirmed from the fitting performed based on the orthodox theory. The values for the capacitance and charging energy obtained from the fitting for ODT capped particles are comparable to the values obtained using spherical capacitor model. In contrast, values of these parameters were found to differ for LAM capped nanoparticles. While imaging, ODT capped nanoparticles were observed to drag along the scan direction leading to ordering of particles. Images of LAM capped gold nanoparticles show local ordering in self-assembly of particles although no evidence of large scale ordering in spatial Fourier transform was seen. These observations suggest that nanoparticles with larger CB would be imaged nonevasively in contrast to small CB systems for which tip induced effects will be dominant. In both the systems the current was found to rise faster than theoretical curves based on the orthodox theory suggesting that mechanism of charge transfer in this case may involve field emission rather than tunneling through a rectangular barrier. An attempt has been made to explain charge transfer based on Fowler-Nordheim (F-N) plots of the I-V curves.  相似文献   

9.
On the basis of the Ashcroft empty core model potential, the equation for the constant of Coulomb interaction in the theory of excitonic insulator is modified. It is shown that in this case the dependence of the energy gap width on the charge carrier density obeys the Mott criterion in the limit of low densities. The conformity of the theory with some experimental data concerning metal–insulator phase transitions in doped semiconductors and transition metal compounds is discussed.  相似文献   

10.
We study the one- and two-dimensional extended Hubbard model by means of the Composite Operator Method within the 2-pole approximation. The fermionic propagator is computed fully self-consistently as a function of temperature, filling and Coulomb interactions. The behaviors of the chemical potential (global indicator) and of the double occupancy and nearest-neighbor density-density correlator (local indicators) are analyzed in detail as primary sources of information regarding the instability of the paramagnetic (metal and insulator) phase towards charge ordering driven by the intersite Coulomb interaction. Very rich phase diagrams (multiple first and second order phase transitions, critical points, reentrant behavior) have been found and discussed with respect to both metal-insulator and charge ordering transitions: the connections with the experimental findings relative to some manganese compounds are analyzed. Moreover, the possibility of improving the capability of describing cuprates with respect to the simple Hubbard model is discussed through the analysis of the Fermi surface and density of states features. We also report about the specific heat behavior in presence of the intersite interaction and the appearance of crossing points.Received: 2 July 2004, Published online: 12 October 2004PACS: 71.10.-w Theories and models of many-electron systems - 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.27. + a Strongly correlated electron systems; heavy fermions  相似文献   

11.
The basic concept of a picture for itinerant ferromagnetism is discussed. The central point is that a local exchange splitting and local moments, exist even above the transition temperature Tc. Transverse fluctuations (and not magnitude fluctuations, as in Stoner theory) are the dominant source for the phase transition to the paramagnetic state. The author's Green's function method is extended to the use of a full bandstructure including hybridization and general electron-electron interactions. Spin waves are also discussed.  相似文献   

12.
We study the S(z)-conserving quantum spin Hall insulator in the presence of Hubbard U from a field theory point of view. The main findings are the following. (1) For arbitrarily small U the edges possess power-law correlated antiferromagnetic XY local moments. Gapless charge excitations arise from the Goldstone-Wilczek mechanism. (2) Electron tunneling between opposite edges allows vortex instantons to proliferate when K, the XY stiffness constant, satisfies 4πK+(4πK)(-1)<4. When the preceding inequality is violated, the edge modes remain gapless despite the sample width being finite. (3) The phase transition from the topological insulator to the large U antiferromagnetic insulator is triggered by the condensation of magnetic excitons. (4) In the large U antiferromagnetic insulating phase the magnetic vortices carry charges proportional to the square magnitude of the antiferromagnetic order parameter.  相似文献   

13.
The particle-hole continuum (PHC) for massive Dirac fermions provides an unprecedented opportunity for the formation of two collective split-off states, one in the singlet and the other in the triplet (spin-1) channel, when the short-range interactions are added to the undoped system. Both states are close in energy and are separated from the continuum of free particle-hole excitations by an energy scale of the order of the gap parameter Δ. They both disperse linearly with two different velocities, reminiscent of spin-charge separation in Luttinger liquids. When the strength of Hubbard interactions is stronger than a critical value, the velocity of singlet excitation, which we interpret as a charge composite boson, becomes zero and renders the system a Mott insulator. Beyond this critical point the low-energy sector is left with a linearly dispersing triplet mode-a characteristic of a Mott insulator. The velocity of the triplet mode at the Mott criticality is twice the velocity of the underlying Dirac fermions. The phase transition line in the space of U and Δ is in qualitative agreement with our previous dynamical mean field theory calculations.  相似文献   

14.
We analyze the phase transitions of an interacting electronic system weakly coupled to free-electron leads by considering its zero-bias conductance. This is expressed in terms of two effective impurity models for the cases with and without spin degeneracy. Using the half-filled ionic Hubbard ring, we demonstrate that the weight of the first conductance peak as a function of external flux or of the difference in gate voltages between even and odd sites allows one to identify the topological charge transition between a correlated insulator and a band insulator.  相似文献   

15.
Electronic structure calculations on the low-dimensional spin?1/2 compound TiOCl were performed at several pressures in the orthorhombic phase, finding that the structure is quasi-one-dimensional. The Ti3+ (d1) ions have one t2g orbital occupied (dyz) with a large hopping integral along the b-direction of the crystal. The most important magnetic coupling is Ti–Ti along the b-axis. The transition temperature (Tc) has a linear evolution with pressure, and at about to 10 GPa this Tc is close to room temperature, leading to a room temperature spin-Peierls insulator–insulator transition, with an important reduction of the charge gap in agreement with the experiment. On the high-pressure monoclinic phase, TiOCl presents two possible dimerized structures with a long or short dimerization. Long dimerized state occurs above 15 GPa, and below this pressure the short dimerized structure is the more stable phase.  相似文献   

16.
AbstractThe band structure of cuprates as a doped 2D insulator is modeled assuming that the excess charge carriers are associated with the corresponding substitution atoms, and the phase diagram of the paramagnetic states as a function of the degree x of doping at zero temperature is studied. The Hamiltonian contains electronic correlations on impurity orbitals and hybridization between them and the initial band states of the insulator. It is shown that the change in the electronic structure of a doped compound includes the formation of impurity bands of distributed and localized electronic states in the initial insulator gap. It is established that in the case of one excess electron per substitution atom the spin fluctuations (1) give rise to an insulator state of the doped compound for x < x thr, 1, (2) lead to a superconducting state for x thr, 1 < x < x thr, 2, and (3) decay as x > x thr, 2 increases further, and the doped compound transforms into a paramagnetic state of a “poor” metal with a high density of localized electronic states at the Fermi level.  相似文献   

17.
In this paper, we report theoretical investigations of structural, electronic and magnetic properties of ordered dilute ferromagnetic semiconductors Cd1−xFexS with x=0.25, 0.5 and 0.75 in zinc blende (B3) phase using all-electron full-potential linear muffin tin orbital (FP-LMTO) calculations within the density functional theory and the generalized gradient approximation. The analysis of band structures, density of states, total energy, exchange interactions and magnetic moments reveals that both the alloys may exhibit a half-metallic ferromagnetism character. The value of calculated magnetic moment per Fe impurity atom is found to be 4 μB. Moreover, we found that p-d hybridization reduces the local magnetic moment of Fe from its free space charge value of 4 μB and produces small local magnetic moments on Cd and S sites.  相似文献   

18.
《Physics letters. [Part B]》1999,461(3):287-294
We discuss charge symmetry and charge independence breaking in an effective field theory approach for few-nucleon systems. We systematically introduce strong isospin-violating and electromagnetic operators in the theory. The charge dependence observed in the nucleon–nucleon scattering lengths is due to one-pion exchange and one electromagnetic four-nucleon contact term. This gives a parameter free expression for the charge dependence of the corresponding effective ranges, which is in agreement with the rather small and uncertain empirical determinations. We also compare the low energy phase shifts of the nn and the np system. We present a classification scheme for corrections to the leading order results and show that power counting explains previously made phenomenological observations.  相似文献   

19.
We discuss a new mechanism of orbital ordering, which in charge transfer insulators is more important than the usual exchange interactions and which can make the very type of the ground state of a charge transfer insulator, i.e., its orbital and magnetic ordering, different from that of a Mott-Hubbard insulator. This purely electronic mechanism allows us to explain why orbitals in Jahn-Teller materials typically order at higher temperatures than spins, and to understand the type of orbital ordering in a number of materials, e.g., K2CuF4, without invoking the electron-lattice interaction.  相似文献   

20.
N. Szabo 《Physics Reports》1978,41(6):329-361
The purpose of the present paper is to discuss the theory of the isothermal local resistivity in the sense of linear response. Different methods, as the Langevin equation, the non-equilibrium density operator technique and the linear response theory of conduction, have been related with each other to clear up different ambiguities in the literature.The first two sections are devoted to introduce the hydrodynamic and linear response equations for the electron gas in a medium of scattering mechanisms (phonons, impurities, etc.). The inversion of the conductivity formula into the isothermal local resistivity is performed with help of a generalized Langevin equation in the isothermal limit (limq → 0 limω → 0A). This result agrees with that of the non-equilibrium operator technique. Then the many-variable projection technique of Mori is used to establish the relations between microscopic theory of electrical conduction and the hydrodynamic equations. The relaxation matrix formulation of Fermi-liquid in a metal can describe sound wave propagation in the Fermi-liquid which corresponds to charge density waves. Further, the relation between the isothermal local resistivity and Köhler's variation principle is established for electron-phonon system on a general way, which allows one to make contact with the Boltzmann equation.In the one-electron approximation the isothermal local resistivity is discussed in terms of phase shifts of non-overlapping scatterers. The result is valid for a dense system of resonant scatterers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号