首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic clusters are being actively studied for activation of methane, the most stable alkane molecule. While many cluster cations are very reactive with methane, the cluster anions are usually not very reactive, particularly for noble metal free anions. This study reports that the reactivity of molybdenum carbide cluster anions with methane can be much enhanced by adsorption of CO. The Mo2C2? is inert with CH4 while the CO addition product Mo2C3O? brings about dehydrogenation of CH4 under thermal collision conditions. The cluster structures and reactions are characterized by mass spectrometry, photoelectron spectroscopy, and quantum chemistry calculations, which demonstrate that the Mo2C3O? isomer with dissociated CO is reactive but the one with non‐dissociated CO is unreactive. The enhancement of cluster reactivity promoted by CO adsorption in this study is compared with those of reported systems of a few carbonyl complexes.  相似文献   

2.
In addition to generation of a methyl radical, formation of a formaldehyde molecule was observed in the thermal reaction of methane with AuNbO3+ heteronuclear oxide cluster cations. The clusters were prepared by laser ablation and mass‐selected to react with CH4 in an ion‐trap reactor under thermal collision conditions. The reaction was studied by mass spectrometry and DFT calculations. The latter indicated that the gold atom promotes formaldehyde formation through transformation of an Au?O bond into an Au?Nb bond during the reaction.  相似文献   

3.
The discovery that supported gold clusters act as highly efficient catalysts for low-temperature oxidation reactions has led to a great deal of work aimed at understanding the origins of the catalytic activity. Several studies have shown that the presence of trace moisture is required for the catalysts to function. Using near-atmospheric pressure flow reactor techniques, we have studied humidity and temperature effects on the reactivity of gas-phase gold cluster anions with O2. Near room temperature, the humid source produces abundant gold-hydroxy cluster anions, Au(N)OH(-), and these have a reversed O2 adsorption activity: Nonreactive bare gold clusters become active when in the form Au(N)OH(-), while active bare clusters are inactive when -OH is bound. The binding energies for the stable structures obtained from density functional calculations confirm fully these findings. Moreover, the theory provides evidence that electron-transfer induced by the binding of a OH group enhances the reactivity toward molecular oxygen for odd anionic gold clusters and suppresses the reactivity for the even ones. The temperature dependence of O2 addition to Au(3)OH(-) and Au(4)(-) indicates deviations from equilibrium control at temperatures below room temperature. The effects of humidity on gold cluster adsorption activity support the conclusion drawn for the mechanism of O2 adsorption on "dry" gold cluster anions and provides insight into the possible role of water in the enhanced activity of supported gold cluster catalysts.  相似文献   

4.
The thermal reactions of the closed‐shell, “naked” gold–carbene complex [Au(CH2)]+ with methane have been explored by using FTICR mass spectrometry complemented by quantum chemical (QC) calculations at the CCSD(T)//BMK level of theory. Mechanistic aspects for this unprecedentedly efficient carbene insertion in the C? H bond of methane have been addressed and the origin of the counterintuitive high reactivity of [Au(CH2)]+ towards this most inert hydrocarbon is discussed.  相似文献   

5.
Methane represents the major constituent of natural gas. It is primarily used only as a source of energy by means of combustion, but could also serve as an abundant hydrocarbon feedstock for high quality chemicals. One of the major challenges in catalysis research nowadays is therefore the development of materials that selectively cleave one of the four C−H bonds of methane and thus make it amenable for further chemical conversion into valuable compounds. By employing infrared spectroscopy and first‐principles calculations it is uncovered herein that the interaction of methane with small gold cluster cations leads to selective C−H bond dissociation and the formation of hydrido methyl complexes, H‐Aux +‐CH3. The distinctive selectivity offered by these gold clusters originates from a fine interplay between the closed‐shell nature of the d states and relativistic effects in gold. Such fine balance in fundamental interactions could prove to be a tunable feature in the rational design of a catalyst.  相似文献   

6.
Temperature-dependent gas-phase reaction kinetics measurements and equilibrium thermodynamics under multicollision conditions in conjunction with ab initio DFT calculations were employed to determine the binding energies of carbon monoxide to triatomic silver-gold binary cluster cations and anions. The binding energies of the first CO molecule to the trimer clusters increase with increasing gold content and with changing charge from negative to positive. Thus, the reactivity of the binary clusters can be sensitively tuned by varying charge state and composition. Also, multiple CO adsorption on the clusters was investigated. The maximum number of adsorbed CO molecules was found to strongly depend on cluster charge and composition as well. Most interestingly, the cationic carbonyl complex Au(3)(CO)(4)(+) is formed at cryogenic temperature, whereas for the anion, only two CO molecules are adsorbed, leading to Au(3)(CO)(2)(-). All other trimer clusters adsorb three CO molecules in the case of the cations and are completely inert to CO in our experiment in the case of the anions.  相似文献   

7.
We demonstrated, for the first time, atomically precise synthesis of gold cluster cations by magnetron sputtering of a gold target onto a polyethylene glycol (PEG) solution of 1,3-bis(diphenylphosphino)propane (Ph2PCH2CH2CH2PPh2, dppp). UV-vis absorption spectroscopy and electrospray ionization mass spectrometry revealed the formation of cationic species, such as [Au(dppp)n]+ (n = 1, 2), [Au2(dppp)n]2+ (n = 3, 4), [Au6(dppp)n]2+ (n = 3, 4), and [Au11(dppp)5]3+. The formation of [Au(dppp)2]+ was ascribed to ionization of Au(dppp)2 by the reaction with PEG, based on its low ionization energy, theoretically predicted, mass spectrometric detection of deprotonated anions of PEG. We proposed that [Au(dppp)2]+ cations thus formed are involved as key components in the formation of the cluster cations.  相似文献   

8.
The study of chemical reactions between gold‐containing heteronuclear oxide clusters and small molecules can provide molecular level mechanisms to understand the excellent activity of gold supported by metal oxides. While the promotion role of gold in alkane transformation was identified in the clusters with atomic oxygen radicals (O?.), the role of gold in the systems without O?. is not clear. By employing mass spectrometry and quantum chemistry calculations, the reactivity of Au2VO3+ clusters with closed‐shell electronic structures toward ethane was explored. Both the dehydrogenation and ethene elimination channels were identified. It is gold rather than oxygen species initiating the C?H activation. The Au?Au dimer formed during the reactions plays important roles in ethane transformation. The reactivity comparison between Au2VO3+ and bare Au2+ demonstrates that Au2VO3+ not only retains the property of bare Au2+ that transforming ethane to dihydrogen, but also exhibits new functions in converting ethane to ethene, which reveals the importance of the composite system. This study provides a further understanding of the reactivity of metal oxide supported gold in alkane activation and transformation.  相似文献   

9.
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas‐phase reactions between size‐ and charge‐selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single‐atom and cluster‐based catalysts. Especially, recent gas‐phase studies have elucidated that small molecules such as O2, CO2, and CH3I can be catalytically activated by negatively‐charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such “reductive activation” processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.  相似文献   

10.
The stability of gold cluster ions Au n + (2n23) has been investigated via collision induced dissociation in a Penning trap. Threshold energies and dissociation channels have been determined. The cluster stability exhibits a pronounced odd — even alternation: Clusters with an odd number of atoms,n, are more stable than the even-numbered ones. Enhanced stabilities are found for Au 3 + , Au 9 + , and Au 19 + in accordance with the Clemenger-Nilsson and the deformed jellium model of delocalized valence electrons. Excited odd cluster ions withn15 predominantly decay by evaporation of dimers; all others decay by monomer evaporation. From the dissociation channels estimates of the binding energies are deduced.This publication comprises part of the thesis of St. Becker  相似文献   

11.
Well controlled gas phase experiments of the size and dopant dependent reactivity of gold clusters can shed light on the surprising discovery that nanometer sized gold particles are catalytically active. Most studies that investigate the reactivity of gold clusters in the gas phase focused on charged, small sized clusters. Here, reactivity measurements in a low-pressure reaction cell were performed to investigate carbon monoxide adsorption on neutral bare and silver doped gold clusters (Au(n)Ag(m); n = 10-45; m = 0, 1, 2) at 140 K. The size dependence of the reaction probabilities reflects the role of the electronic shells for the carbon monoxide adsorption, with closed electronic shell systems being the most reactive. In addition, the cluster's reaction probability is reduced upon substitution of gold atoms for silver. Inclusion of a single silver atom causes significant changes in the reactivity only for a few cluster sizes, whereas there is a more general reduction in the reactivity with two silver atoms in the cluster. The experimental observations are qualitatively explained on the basis of a Blyholder model, which includes dopant induced features such as electron transfer from silver to gold, reduced s-d hybrization, and changes in the cluster geometry.  相似文献   

12.
Vanadium–silicon heteronuclear oxide cluster cations were prepared by laser ablation of a V/Si mixed sample in an O2 background. Reactions of the heteronuclear oxide cations with methane in a fast‐flow reactor were studied with a time‐of‐flight (TOF) mass spectrometer to detect the cluster distribution before and after the reactions. Hydrogen abstraction reactions were identified over stoichiometric cluster cations [(V2O5)n(SiO2)m]+ (n=1, m=1–4; n=2, m=1), and the estimated first‐order rate constants for the reactions were close to that of the homonuclear oxide cluster V4O10+ with methane. Density functional calculations were performed to study the structural, bonding, electronic, and reactivity properties of these stoichiometric oxide clusters. Terminal‐oxygen‐centered radicals (Ot . ) were found in all of the stable isomers. These Ot . radicals are active sites of the clusters in reaction with CH4. The Ot . radicals in [V2O5(SiO2)1–4]+ clusters are bonded with Si rather than V atoms. All the hydrogen abstraction reactions are favorable both thermodynamically and kinetically. This work reveals the unique properties of metal/nonmetal heteronuclear oxide clusters, and may provide new insights into CH4 activation on silica‐supported vanadium oxide catalysts.  相似文献   

13.
In order to understand the catalytic activity of small metal clusters as a function of their size, we have studied the interaction of CH4 with Al4 and Al5 neutral and charged clusters, as well as neutral thermally expanded clusters in the two lowest lying spin states, using density functional theory. These calculations, via extended search, are used to determine the stable positions of H and CH3 near the cluster, and the transition state to break the H─CH3 bond. In order to understand the factors underlying the reactivity of the clusters, we have analyzed the electronic structure at the transition state. By an analysis of the change of the electronic density of states close to the transition state, we identify the orbitals involved in the bond breaking process. In conjunction with our previous studies of Al2 and Al3 clusters, we find that the small Al clusters, except for Al5, lower the CH3─H dissociation barrier with respect to the gas-phase value, although Al lacks occupied d-orbitals. Still, Al5 does not catalyze methane bond breaking, which is attributed to the required interaction with low-lying Al sp-states. Furthermore, in all cases where stable methyl-aluminum-hydrides are possible, the recombinative desorption of methane is studied by vibrational analysis and application of transition state theory.  相似文献   

14.
The synthetic approach towards molecules that contain Ge atoms with oxidation state 0, and which are exclusively connected to other Ge atoms, is explored by using anionic clusters extracted from binary solids. Besides providing a novel variable method for the introduction of alkenyl moieties to [Ge9] cluster compounds, this work expands the spectrum of mixed-functionalized [Ge9] cluster anions, which are suitable for the straightforward synthesis of zwitterionic compounds upon coordination to metal cations. In detail, the synthesis of a series of mixed-functionalized [Ge9] clusters is reported, including [Ge9{Si(TMS)3}3PRRI] (R=tBu, RI=(CH2)3CH=CH2; 2 ) and [Ge9{Si(TMS)3}2PRRI] (R and RI: alkyl, alkenyl, aryl, aminoalkyl; 3 a to 11 a , TMS: (trimethyl)silyl). In 2 and 3 a , pentenyl functionalization of the [Ge9] clusters was achieved by reaction of the novel chlorophosphine tBu{(CH2)3CH=CH2}PCl ( 1 ) with silylated [Ge9] clusters. Furthermore, the reactivity of the cluster anions 3 a to 11 a towards NHCDippMCl (NHCDipp=1,3-di(2,6-diisopropylphenyl)imidazolylidine; M=Cu, Ag) showed a dependency on the steric demand of the phosphine either zwitterions ( 3 -MNHCDipp to 7 -MNHCDipp) featuring P–M interactions are formed, or Ge–M coordination ( 8 -MNHCDipp to 11 -MNHCDipp) occurs. For M=Ag, the formation of zwitterionic complexes was unequivocally proven by NMR investigations showing 1J(31P-107Ag/109Ag) spin-spin coupling.  相似文献   

15.
Density functional GGA-PW91 method with DNP basis set is applied to optimize the geometries of Ag n H (n = 1–10) clusters. For the lowest energy geometries of Ag n H (n = 1–10) clusters, the hydrogen atom prefers to occupy the two-fold coordination bridge site except the occupation of single-fold coordination site in AgH cluster. After adsorption of hydrogen atom, most Ag n structures are slightly perturbed and only the Ag6 structure in Ag6H cluster is distorted obviously. The Ag–Ag bond is strengthened and the strength of Ag–H bond exhibits a clear odd–even oscillation like the strength of Au–H bond in Au n H clusters, indicating that the hydrogen atom is more favorable to be adsorbed by odd-numbered pure silver clusters. The adsorption strength of small silver cluster toward H atom is obviously weaker than that of small gold cluster toward H atom due to the strong scalar relativistic effect in small gold cluster. The pronounced odd–even alternation of the magnetic moments is observed in Ag n H systems, indicating that the Ag n H clusters possess tunable magnetic properties by adsorbing hydrogen atom onto odd-numbered or even-numbered small silver cluster.  相似文献   

16.
A first-principles quantum chemistry method, based on the Kohn-Sham density-functional theory, is used to investigate the adsorption of CO and O2 on small gas-phase gold cluster anions. The saturated adsorption of carbon monoxide on gold cluster anions AuN- (N=2-7) is discussed. The adsorption ability of CO reduces with the increase of the number of CO molecules bound to gold cluster anions, resulting in saturated adsorption at a certain amount of absorbed CO molecules, which is determined by geometric and electronic properties of gold clusters cooperatively. The effect of CO preadsorption on the electronic properties of gold cluster anions depends on the cluster size and the number of adsorbed CO, and the vertical detachment energies of CO-adsorbed gold cluster anions show a few changes with respect to corresponding pure gold cluster anions. The results indicate that the impinging adsorption of CO molecules may lead to geometry structure transformation on Au3- cluster. For the coadsorption of CO and O2 on Au2-, Au3- isomers, Au4-, and Au6-, we describe the cooperative adsorption between CO and O2, and find that the O2 dissociation is difficult on gas-phase gold cluster anions even with the preadsorption of CO.  相似文献   

17.
A capability of freshly deposited cadmium complex with cyclic morpholinodithiocarbamate ligand (MfDtc) to bind gold(III) from 2 M HCl solutions was studied. The individual form of bound gold (III) isolated from solution was found to be the hydrated heteropolynuclear complex of ionic type ([Au{S2CN(CH2)4O}2]2[CdCl4] · H2O) n (I). Molecular and supramolecular structure of preparatively isolated compound I was established by X-ray diffraction study, the structure includes four (1: 1: 1: 1) structurally nonequivalent centrosymmetric complex cations [Au{S2CN(CH2)4O}2]+ which relate to each other in agreement with appeared structural differences as conformers: A, B, C, and D cations with Au(1), Au(2), Au(3), and Au(4), respectively. At the supramolecular level, the isomeric complex cations undergo structural self-organization to form independent polymeric chains of two types: (-A-C-) n and (-B-D-) n on account of pairs of unsymmetrical secondary Au…S bonds (3.463, 3.496, and 3.627, 3.669 Å). Distorted tetrahedral [CdCl4]2? anions are located in the space between these chains. The chemisorption capacity of cadmium morpholinodithiocarbamate calculated from gold(III) binding is 450.8 mg Au3+ per 1 g of sorbent (i.e., each mononuclear fragment of the chemisorbent complex [Cd{S2CN(CH2)4O}2] binds one gold atom. The conditions of recovery of bound gold were found in the study of thermal behavior of I by simultaneous thermal analysis (STA). The multistep process of thermal destruction includes complex dehydration, thermolysis of its dithiocarbamate fragment and [CdCl4]2? to release gold metal, cadmium chloride, and partially CdS.  相似文献   

18.
The interaction of freshly precipitated cadmium and zinc morpholinedithiocarbamates with solutions of AuCl3 in 2 M HCl is studied. In both cases, the heterogeneous reactions of gold(III) binding from solutions lead to the formation of the ionic gold(III) complex [Au3{S2CN(CH2)4O}6][Au2Cl8][AuCl4] (I), whose molecular and supramolecular structures are determined by X-ray diffraction analysis. Compound I includes centrosymmetric and noncentrosymmetric cations [Au{S2CN(CH2)4O}2]+ in a ratio of 1: 2. According to the manifested structural differences, the complex cations are related as conformers (cations A are Au(1) and cations B are Au(2)). At the supramolecular level, the isomeric cations form linear trinuclear structural fragments [Au3{S2CN(CH2)4O}6]3+ [A...B...A] due to secondary bonds Au...S of 3.6364 Å. The anionic part of compound I is presented by [AuCl4]? and centrosymmetric binuclear [Au2Cl8]2?, whose formation involved secondary bonds Au...Cl of 3.486 and 3.985 Å. The ultimate chemisorption capacity of cadmium and zinc morpholinedithiocarbamates calculated from the binding of gold(III) is 901.7 and 1010.4 mg of Au3+ per 1 g of the sorbent, respectively (i.e., each miononuclear fragment of the chemisorption complexes [M{S2CN(CH2)4O}2] participates in binding of two gold atoms). To establish the conditions for the isolation of bound gold, the thermal properties of compound I are studied by simultaneous thermal analysis. The thermal destruction process includes the thermolysis of the dithiocarbamate part of the complex and anions [AuCl4]? and [Au2Cl8]2? with the reduction of gold to the metal, being the only final product of the thermal transformations of compound I.  相似文献   

19.
This article is intended to summarize recent studies on the reactivity and dynamics of gas-phase vanadium oxide cluster cations in terms of their dependence on the size and stoichiometry of the selected clusters. In addition, the effects of coordination, oxidation states of the vanadium atoms, influence of charge, and ionization potentials on the reactivity of these clusters are presented. Reactions of the clusters V3 O 7 + and V5 O 12 + with 1-butene, 1,3-butadiene, and difluoromethane differ significantly from those of similar clusters such as V3 O 6 + and V5 O 11 + . While oxygen transfer and carbon–carbon cracking reactions are observed for the former clusters, the latter primarily associate the neutral reactant species. These differences are largely related to the oxidation states of the vanadium atoms within the cluster, but also display a dependence on the size of the cluster, with the smaller clusters being more reactive than the larger ones. Reactions with carbon tetrachloride display a dependence on the coordination of the clusters, but also display a distinct change in reaction channels from the chloride transfer reaction for the smaller clusters to the oxidative chloride transfer and formation of neutral phosgene for cluster with more than three vanadium atoms. In contrast, the dehydrohalogenation reactions of CH3CF3 display little dependence on the size of the clusters.  相似文献   

20.
以高能量密度的脉冲激光束在高真空中直接溅射银(金)粉与硫的混合物, 产生了丰富的银-硫和金-硫二元原子族正负离子, 记录了它们的飞行时间质谱。通过对这些簇离子的组成与分布的分析, 发现了它们的一些结构规律。银硫簇离子以离子键为主, Ag2S是它们的主要结构单元, 其中Ag11S5^+和Ag9S5^-特别稳定; 金硫簇离子基本上是共价结构, 金原子间相互成键, 构成簇离子的核, 硫原子则仅与核表面的金原子配位, 其中Ag6S14^+, Au5S6^-的稳定性比较突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号