首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fission fragment mass-yields are evaluated for pre-actinide and actinide isotopes using a systematic statistical scission point model. The total potential energy of the fissioning systems at the scission point is presented in approximate relations as functions of mass numbers,deformation parameters and the temperature of complementary fission fragments. The collective temperature, Tcoll, and the temperature of fission fragments, Ti, are separated and the effect of collective temperature on mass yields results is investigated. The fragment temperature has been calculated with the generalized superfluid model. The sum of deformation parameters of complementary fission fragments has been obtained by fitting the calculated results with the experimental data. To investigate the transitions between symmetric and asymmetric modes mass yields for pre-actinide and heavy actinides are calculated with this model. The transition from asymmetric to symmetric fission is well reproduced using this systematic statistical scission point model. The calculated results are in good agreement with the experimental data with Tcoll= 2 Me V at intermediate excitation energy and with T_(coll)= 1MeV for spontaneous fission.Despite the Langevin model, in the scission point model, a constraint on the deformation parameters of fission fragments has little effect on the results of the mass yield.  相似文献   

2.
Masses, charges and kinetic energies of light fission fragments from the reactions232U(n, f) and239Pu(n, f) induced by thermal neutrons have been measured on the Cosi fan tutte spectrometer of the Institut Laue-Langevin in Grenoble. Both at very high and very low kinetic energies marked fine structures in the mass yields and odd-even staggerings in the charge yields are observed. In the framework of a scission point model the results are shown to point to compact and deformed scission configurations, respectively, where at scission the fragments carry no intrinsic excitation energy. The two limiting processes may, therefore, be called cold compact fission (usually known as cold fission) and cold deformed fission. The latter process as a general phenomenon of low energy fission has come into focus only recently.  相似文献   

3.
A dynamical model for fission from the classical turning point to scission and beyond is presented. We consider the fissioning nucleus as well as the fission fragments as incompressible irrotational deformable charged liquid drops. We focus on the post-scission time evolution of the neck, stretching of the fragments, kinetic energy and excitation energy.  相似文献   

4.
Based on the statistical fission theory, we have calculated the mass and kinetic energy distributions as well as other physical quantities of 235U fission induced by thermal neutron using microscopical method. That is, the quantum state densities of the fragments at scission point are calculated by means of BCS hamiltonian. The contribution of the collective deformation of fragments to the quantum state density has been taken into consideration. The potential energy of fragment is calculated by means of Strutinski procedure, and the shelling effect, pairing correlation as well as collective deformation have been taken into consideration in calculating the excitation energy at scission point. The scission point distance is treated as an adjustable parameter.Comparing with other statistical fission theories, our results give better agreement with existing experiments.  相似文献   

5.
Within an improved scission point model, experimental data on the relative yield, mean value and variance of the total kinetic-energy distribution of fission fragments are described. It is shown that for a fixed mass and charge fragmentation, the potential energy of the scission configuration has several minima as a function of the deformation parameters of the fragments. The scission at these minima leads to a relatively enhanced yield of the fragments with a certain TKE and creates fine structures in the TKE-mass distribution which are different from those produced by the odd-even effect.Received: 24 March 2004, Published online: 12 October 2004PACS: 24.75. + i General properties of fission - 21.60.Gx Cluster models  相似文献   

6.
Isomeric yield ratios of 30 fission products in 24 MeV proton-induced fission of238U were measured by the use of the ion-guide isotope separator on-line. The obtained isomeric yield ratios were converted to the angular momenta of primary fission fragments based on the statistical model. The deduced angular momenta were examined from various aspects. It is found that in general the angular momentum continuously increases with the fragment mass number including the region of symmetric mass division. However, there are some exceptions. For Sn isotopes the deduced angular momenta are quite small due to the spherical shape of the nuclear shell configuration. It is also concluded from the consideration of the charge distribution that the angular momentum of fission product scatters considerably within the narrow range of mass division. The dependence of the angular momentum on the available energy of fragments at scission point indicates that the individual fragment possesses a characteristic deformation at scission and/or the deduced angular momentum is seriously affected by the particle excitation after scission.  相似文献   

7.
The average multiplicity of gamma rays emitted by fragments originating from the fission of 226Th nuclei formed via a complete fusion of 18O and 208Pb nuclei at laboratory energies of 18O projectile ions in the range E lab = 78–198.5 MeV is measured and analyzed. The total spins of fission fragments are found and used in an empirical analysis of the energy dependence of the anisotropy of these fragments under the assumption that their angular distributions are formed in the vicinity of the scission point. The average temperature of compound nuclei at the scission point and their average angular momenta in the entrance channel are found for this analysis. Also, the moments of inertia are calculated for this purpose for the chain of fissile thorium nuclei at the scission point. All of these parameters are determined at the scission point by means of three-dimensional dynamical calculations based on Langevin equations. A strong alignment of fragment spins is assumed in analyzing the anisotropy in question. In that case, the energy dependence of the anisotropy of fission fragments is faithfully reproduced at energies in excess of the Coulomb barrier (E c.m. ? E B ≥ 30 MeV). It is assumed that, as the excitation energy and the angular momentum of a fissile nucleus are increased, the region where the angular distributions of fragments are formed is gradually shifted from the region of nuclear deformations in the vicinity of the saddle point to the region of nuclear deformations in the vicinity of the scission point, the total angular momentum of the nucleus undergoing fission being split into the orbital component, which is responsible for the anisotropy of fragments, and the spin component. This conclusion can be qualitatively explained on the basis of linear-response theory.  相似文献   

8.
9.
Induced fission reactions of fissioning compound nuclei that result from the capture of various incident particles (nucleons, γ rays, multiply charged ions) by target nuclei are investigated using the generalized nucleus model and the Wigner random matrix method. The effect produced on the fission widths of the compound nucleus by the competition between the excitation energies of its collective vibrational degrees of freedom that lead to its scission into fission fragments and its rotational and multi-quasiparticle states is analyzed. Bohr’s concept of transition fission states developed for near-barrier nuclear fission is generalized to the induced fission of nuclei with the excitation energies noticeably higher than the fission barriers. The temperature of the fissioning nucleus in the vicinity of the point of its scission into fission fragments is estimated.  相似文献   

10.
The neutronless fission of 252Cf is studied in the frame of a molecular model in which the scission configuration is described by two aligned fragments interacting by means of Coulomb (+ nuclear) forces. The study is carried out for different distances between the fragments tips and excitation energies. For a given deformation, the fragment's total energy is computed via the constrained Hartree-Fock + BCS formalism. The total excitation energy present in the fragments is supposed to contribute only to the fragments deformation and the asymptotic value of the kinetic energy is equated to the inter-fragment potential at scission. These two constraints are yielding a few fission channels for a fixed tip distance and excitation energy. Discarding those fission channels corresponding to a disequilibrium in the sharing of the excitation energy between the two fragments, we establish the most likely scission configurations for a specified excitation energy. Received: 24 September 1999  相似文献   

11.
《Nuclear Physics A》1997,617(3):331-346
The results of a systematic study of the mass and energy of fission fragments emitted in the spontaneous fission of 236,238,240,242,244Pu are reported. A comparison of the fragments' mass and energy distributions demonstrates the occurrence of different fission modes with varying relative probability. These results are discussed in terms of the random neck rupture model as well as in terms of the scission point model, showing the influence of the neutron number of the fissioning system. Finally an improved method of analysis allows the investigation of the cold fission region.  相似文献   

12.
It is shown that almost the entire excitation energy acquired by the fission fragments during the descent from the saddle to the scission point comes from Landau-Zener transitions. The states tractable in the first order adiabatic approximation carry an excitation energy of a few hundred keV.  相似文献   

13.
The most probable charges of secondary fragments, produced after neutron evaporation from primary fragments, have been evaluated using fractional cumulative and mass yields in the 12MeV proton-induced fission of 232Th . The nuclear-charge polarization of primary fragments at scission has been obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The fragment mass dependence of the nuclear-charge polarization at scission shows good agreement with that for thermal neutron-induced fission of 235U , indicating that the nuclear-charge polarization is nearly insensitive to mass and excitation energy of the fissioning nucleus for asymmetric fission in the actinide region.  相似文献   

14.
The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding232Th and238U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy.  相似文献   

15.
It is shown that the multiplicities and angular and energy distributions of neutrons and photons evaporated from thermalized fragments originating from the spontaneous and low-energy induced fission of nuclei, the relative yields of ground and isomeric states of final fragments, and the features of delayed neutrons emitted upon the beta decay of the above fragments can successfully be described by employing nonequilibrium distributions of spins and relative orbital angular momenta of fission fragments formed in the vicinity of the scission point for the fissile nucleus being studied. It is also shown that these distributions, which are characterized by large mean values of the spins and orbital angular momenta directed orthogonally to the symmetry axis of the fissioning nucleus are successfully constructed upon simultaneously taking into account zero-mode transverse wriggling and bending vibrations of a fissile compound nucleus in the vicinity of its scission point, the wriggling vibrations being dominant. It is confirmed that the zero-mode wriggling vibrations considered immediately above are directly involved in the formation of the angular distributions of fragments originating from the spontaneous and low-energy fission of nuclei. This makes it possible to describe successfully such distributions for photofission fragments.  相似文献   

16.
A shape, rotating cassin's oval body with symmetry deformation parameter of 1.0, in nuclear fission scission point is suggested. By use of the shape, simple calculations on average total kinetic energy of fission fragments in both symmetry and asymmetry cases show that the results are in agreement with semiempirical formula due to V.E. Viola.  相似文献   

17.
Quantitative explanation for the odd-even effect on fragment angular momenta in the low-energy fission of actinides have been provided by taking into account the single particle spin of the odd proton at the fragment’s scission point deformation in the case of odd-Z fragments along with the contribution from the population of angular momentum bearing collective vibrations of the fissioning nucleus at scission point. The calculated fragment angular momenta have been found to be in very good agreement with the experimental data for fragments in the mass number region of 130–140. The odd-even effect observed in the fragment angular momenta in the low-energy fission of actinides has been explained quantitatively for the first time.   相似文献   

18.
The energy balance in the fission of 234U has been investigated on the basis of experimental results from the 233U(d, pf) reaction. Taking into account the neutron evaporation we have deduced the total kinetic energy and excitation energy distributions of the primary fragments as functions of the excitation energy of the fissioning nucleus. The neutron evaporation temperatures have been adjusted so as to reproduce the average value and width of the measured kinetic energy distributions for each fragmentation. Excitation energy distributions of the fragments have been deduced. The data are discussed in the framework of the liquid-drop model with shell corrections. Evidence for energy dissipation in the fission of 234U, involving drastic changes in the scission configuration, is shown for some fragmentation modes.  相似文献   

19.
We develop a model for pair-breaking in order to explain the behavior of the even-odd effects displayed both by the fragment yields and the fragments' kinetic energies in low energy nuclear fission. Neutron and proton pair breaking are taken into acount. Two pair-breaking mechanisms are considered. In the first, pairs are broken at the saddle point and the individual members of the broken pairs are assumed to localise independently in the fragments. In the second, pairs are broken at scission and individual members of the broken pairs are assumed to end in different fission fragments. With this simple model all existing experimental data can be explained, including results of cold-fragmentation.  相似文献   

20.
A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system (DNS) model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the angular distribution of fission fragments for the neutron–induced fission of 239Pu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号