首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well‐defined reference geometry. The localized‐orbital‐locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. © 2008 Wiley Periodicals, Inc.J Comput Chem, 2009.  相似文献   

2.
The electron transfer reactivity of the O2+O system in low-spin coupling is studied at the second-order unrestricted Møller–Plesset (full)/6-311+G* basis set level by using different transition state structures. The properties and stabilities of the encounter complexes are compared for the five selected coupling structures: two T type, collinear, parallel, and crossing. The activation barriers and the coupling matrix elements are also calculated. The results indicate that the structures of the encounter complexes directly affect the electron transfer mechanism and rate. These encounter complexes are structurally unstable, the contact distances between the acceptor O2 and the donor O are generally large, the interaction is weak, and the structures are floppy. The electronic transmission factor for the reacting system, O2+O, is less than unity; thus, the electron transfer reaction is nonadiabatic in nature. Analysis of the dependence of relevant kinetic parameters on various influencing factors has shown that the effect of the solvent medium on the coupling matrix element is small but that on the electron transfer rate is very large. Among the five selected transition state structures, the electron transfer is more likely to take place via T1-type and P-type structures. In the low-spin coupling the favorable electronic states for two reacting species are 1∑(O2) and X2Πg(O) instead of X3∑(O2) and X2πg(O), which are favorable for the high-spin (quartet state) coupling mechanism. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 989–998, 1999  相似文献   

3.
In this article, we discuss how to incorporate correlation aspects in the interaction of the electron with a “frozen” correlated target. We discuss the important aspects of correlation for e? + N2 scattering using configuration interaction, coupled cluster, and perturbative methods to describe the correlation in the target molecule. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Ground-state atomic correlation energies, and their kinetic energy and potential energy components, are shown to be well-represented by empirical formulas of the form CNrho(0)Z(-gamma), where C and gamma are constants that are largely invariant within various sets of atoms and positive ions, Z is the atomic number, N is the number of electrons, and rho(0) is the electron density at the nucleus. Results are given for neutral atoms, singly charged positive ions, and many isoelectronic series-315 atomic species in all.  相似文献   

5.
The differential cross-sections for high-energy electrons scattered from water have been measured over a wide range of momentum transfers. The effect of chemical binding was seen from the comparison between the experiment and the calculation for an independent-atom model. The ab initio calculation using SCF MO was carried out with respect to the elastic scattering. It was in a good agreement with the experiment and thus a reliable electron distribution in water was obtained.  相似文献   

6.
Using the Boltzman equation electron energy distribution functions, swarm parameters (mean energy, characteristic energy, drift velocity and diffusion coefficient), and transition rates (one for vibrational and one for electronical excitation for each of the gases) for N2+O2 (80%+20%) mixture plasma have been calculated. The influence of the applied reduced electric field and the vibrational temperatures on these quantities is studied.  相似文献   

7.
An apparatus containing cross molecular and pulsed electron beams has been used to obtain distributions in kinetic energy and angle of fast (? 0.5 eV) positive ions produced through dissociative ionization of N2 and O2 by impact of 50 to 2000 eV electrons. Four main O+ ion groups are observed with peak energies of 0.8, 2.0, 3.0, and 5.0 eV. Two main N+ groups peaking at 2.0 and 3.0 eV are seen. Angular distributions of both N+ and O+ ions are essentially isotropic for electron-beam-ion detection angles from 30° to 110°.  相似文献   

8.
The total (elastic and inelastic) intensity of electrons scattered by CO2 was measured in the s range of 1 to 12 Å?1 and compared with the theoretical intensity calculated from the Hartree-Fock molecular wave function and those calculated for the independent-atom-model (IAM ) molecule. In the range of s ? 4 Å?1 the electron correlation effect on the total scattered intensity was found to be represented by that for the IAM molecule.  相似文献   

9.
Nitrogen dioxide, being known to exist as a dimer N2O4 in the crystal with a very long N-N bond length of 1.76 A, was crystallized at low-temperature conditions on a diffractometer. High-resolution X-ray data (sin(theta/lambda) = 1.249 A-1) were recorded with a CCD area detector to allow the generation of an experimental charge density distribution. By making use of Bader's AIM theory, zero-flux surfaces were calculated, and we examined atomic volumes and atomic charges obtained from this experiment and various theoretical calculations. Four commonly used methods of computing atomic charges (Mulliken, AIM, NPA, and CHELP) were considered. The AIM charges are rather independent from the used basis set. Interestingly, the evaluated atomic volumes are very similar between experiment and theory, although in theory isolated molecules are considered. For the long N-N bond a bond order n of approximately 0.5 was derived from a comparison with appropriate model compounds.  相似文献   

10.
The N 1s Auger spectra for the two nonequivalent N atoms in N2O have been measured via Auger electron-photoelectron coincidence spectroscopy. The site-selected Auger spectra are compared with the normal Auger spectrum and with accurate theoretical calculations accounting for the effects of the dynamics of the nuclei on the energy and linewidth of the Auger bands. Such effects are found to be crucial factors in determining the different band shapes in the site-selected spectra.  相似文献   

11.
In previous papers a method has been proposed to find out the relative importance of the different paths in the decay of the ν3 mode of N2O, but the VT transfer constants involved in the kinetic model were barely known. As new values of VT constants have just been measured, the calculations of the kinetic model have been performed again; they qualitatively confirm the results already obtained with estimated VT constants.  相似文献   

12.
The total (elastic plus inelastic) intensities of 51 keV electrons scattered by H2CO and H2CCO have been measured over a range of K = (4π/λ) sin(θ/2) = 1–9.5 Å?1 and compared with the theoretical intensities calculated with SCF and CI wave functions. Significant discrepancies are found between the experimental intensities and the theoretical ones based on the SCF wave functions. Most of the chemical binding and electron correlation effects observed in the total scattered intensities are reproduced by the theoretical intensities based on the CI wave functions calculated with the basis set including polarization functions on all atoms. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
We study the electronic density charge topology of CH(5)(+) species 1 (C(s)()), 2 (C(s)()), and 3 (C(2)(v)) at ab initio level using the theory of atoms in molecules developed by Bader. Despite the reports of previous studies concerning carbocationic species, the methane molecule is protonated at the carbon atom, which clearly shows its pentacoordination. In addition to the fact that hydrogen atoms in the methonium molecule behave in a very fluxional fashion and that the energy difference among the species 1, 2, and 3 are very low, is important to point out that two different topological situations can be defined on the basis of our study of the topology of the electronic charge density. Then, the species 1 and 2 present a three-center-two-electron (3c-2e) bond of singular characteristics as compared with other carbocationic species, but in the species 3, the absence of a 3c-2e bond is noteworthy. This structure can be characterized through the three bond critical points found, corresponding to saddle points on the path bonds between the C-H(2,3,5) that lie in the same plane. These nuclei define a four-center interaction where the electronic delocalization produced among the sigma(C-H) bonds provide a stabilization of the three C-H bonds involved in this interaction (the remaining two C-H bonds are similar to those belonging to the nonprotonated species). Our results show that bonding situations with a higher number of atom arrays are possible in protonated hydrocarbons.  相似文献   

14.
Electron correlation is one long standing problem of computational electronic structure theory. Even more, with the advent of the density functional theory and, in particular, with its Kohn–Sham implementation, the separation of the non-dynamical and dynamical components of the electron correlation has became an unavoidable requirement towards construction of reliable exchange-correlation functionals. In this paper, we address the analysis of the separation of the non-dynamical and dynamical electron correlation effects from two complementary viewpoints, namely, analysis of the correlation energy components and the analysis of the electron-pair density. The former approach will make use of the local-scaling transformations and the latter will be based on the study of intracule and extracule densities.Work supported by grant 9/UPV-00203.215-13527/2001of the Office of Universities and Research of the The Goverment of the Basque Country and, by grant BQU2001-0208 of the Spanish Ministry of Education and Science.Partially supported by grant G-97000741 of CONICIT of Venezuela.  相似文献   

15.
We have experimentally carried out a Rayleigh scattering study of a high refractive index TiO(2) nanohybrid polymer. By employing the Rayleigh scattering technique with at least three different wavelengths, we can obtain the Rayleigh ratio of the TiO(2) nanohybrid polymer at each utilized wavelength. These measured Rayleigh ratios are then used to estimate the size of the nanoparticle and determine the number of nanoparticles per unit volume or particle density. Furthermore, this technique can be used to evaluate the dominant size of nanoparticles in the nanohybrid polymer mainly contributed to Rayleigh scattering.  相似文献   

16.
The electron charge distribution in a strongly twisted push-pull ethylene [PPE, 3-(1,3-diisopropyl-2-imidazolidinylidene)-2,4-pentanedione] has been determined by low temperature (T = 21 K) single-crystal X-ray diffraction analysis. The derived electronic properties are consistent with a zwitterionic molecule, as indicated by a charge transfer of 0.82(16) e from the push to the pull moieties and a charge polarization of 0.29(7) e on the olefinic bond. A dipole moment of 12(3) D has been determined, which compares well with ab initio theoretical results in terms of both modulus and orientation. The second moments, which have also been obtained with good precision, characterize PPE as a highly quadrupolar molecule. The special electronic features of the molecule confer particular topological properties to the electron density distribution, as evidenced by comparison with "standard" organic molecules. The crystallographic asymmetric unit of the present system includes one water molecule, which is hydrogen bonded to PPE. Its topological properties have also been investigated, together with an analysis of the hydrogen bonds involved.  相似文献   

17.
The structure of SiO2 gel-films prepared from acid and basic TEOS solutions is analyzed by high energy transmission electron diffraction method. The Si-O bond length of gel-films is 1.58 to 1.60 Å, which is shorter than that of vitreous silica (1.61 Å) but similar to that of 80 Å thick evaporated a-SiO2 film. An atomic pair peak with 0.81 Å distance exists on the reduced radial distribution functions of the gel-films, which is believed to be O-H, but being smaller than that of H2O (0.969 Å).  相似文献   

18.
Strips of polystyrene held in a flowing O2 or N2O atmosphere have been exposed to 240-600 nm radiation. The extent of photooxidation has been followed by x-ray photoelectron spectroscopy (XPS). Although N2O is a more reactive gas than O2, it produces a less oxidized polymer surface. This surprising observation can be correlated to the photochemistry occurring at the gas/polystyrene interface. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the work is to identify the various interactions that stabilize cellulose structure. AIM analysis aids study of non-covalent interactions, especially those for which geometric criteria are not well established. The models were in the form of pairs of cellotriose molecules, methylated at the O1 and O4 ends. Based on the unit cell of cellulose Iβ, there were corner–corner, and center–center pairs that correspond to (200) sheets, and corner–center pairings that corresponded to (1–10) and (110) stacks. AIM analysis (or charge-density topology analysis) was applied before and after minimization in vacuum and in continuum solvation. Besides the conventional O–H···O hydrogen bonds, all of which were known from geometric criteria, C–H···O hydrogen bonds (some previously reported), and some O···O and H···H interactions were found. Non-covalent bonds in the (200) sheets were maintained in all calculations with the exception of a weak, bifurcated O6–H···O2′′ bond that was not found in the corner–corner pair model and did not survive minimization. Nor did the O6···O4 interactions on the reducing ends of the triosides. Pairs of molecules along the (110) plane had an equal number (12) of non-covalent bonds compared to the pairs along the (1–10) plane, but the AIM parameters indicated the bonds between the pairs in the (110) plane were weaker. Intra-molecular O–H···O hydrogen bonds survived in these minimized pairs, but the relative chain alignments usually did not.  相似文献   

20.
Intrinsic reaction coordinate (IRC) torsional potentials were calculated for N(2)O(4) and N(2)O(3) based on optimized B3LYP/aug-cc-pVDZ geometries of the respective 90 degrees -twisted saddle points. These potentials were refined by obtaining CCSD(T)aug-cc-pVXZ energies [in the complete basis set (CBS) limit] of points along the IRC. A comparison is made between these ab initio potentials and an analytical form based on a two-term cosine expansion in terms of the N-N dihedral angle. The shapes of these two potential curves are in close agreement. The torsional barriers in N(2)O(4) and N(2)O(3) obtained from the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ calculations are 2333 and 1704 cm(-1), respectively. For N(2)O(4) the torsion fundamental frequency from the IRC potential is 87.06 cm(-1), which is in good agreement with the experimentally reported value of 81.73 cm(-1). However, in the case of N(2)O(3) the torsional frequency found from the IRC potential, 144 cm(-1), is considerably larger than the reported experimental values 63-76 cm(-1). Consistent with this discrepancy, the torsional barrier obtained from several different calculations, 1417-1718 cm(-1), is higher than the value of 350 cm(-1) deduced from experimental studies. It is suggested that the assignment of the torsional mode in N(2)O(3) should be reexamined. N(2)O(4) and N(2)O(3) exhibit strong hyperconjugative interactions of in-plane O lone pairs with the central N-N sigma* antibond. Hyperconjugative stabilization is somewhat stronger at the planar geometries because 1,4 interactions of lone pairs on cis O atoms promote delocalization of electrons into the N-N antibond. Calculations therefore suggest that the torsional barriers in these molecules arise principally from a combination of 1,4 interactions and hyperconjugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号