首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning tunneling microscopy (STM) and spectroscopy (STS) are new methods to investigate atomic arrangements and electronic structures of clusters and small particles of atoms. In this paper we review recent developments in this field, in particular the work from our laboratory. We show studies of single adatoms, small clusters and larger particles of platinum and a trimer of aluminum imaged with atomic resolution on highly-orient ed pyrolytic graphite. We find different isomeric structures for clusters of a specific size. Taking the substrate lattice as reference we determine bond lengths and angles for the clusters. We find that adsorbed Pt-particles have a strong influence on the substrate. Periodic charge density modulations on the graphite lattice surrounding the particles are observed. We also discuss recent STS experiments which showed Coulomb blockade in electron tunneling. A silicon-oxide-graphite tip-junction is used where a mesoscopic insulating area containing trap levels for temporary electron storage is responsible for the blockade of single electron transport. Such an ultra-small insulator capacitor shows large voltage steps in current-voltage characteristics and quantization of the tunneling current.  相似文献   

2.
The correlation between atomic bonding sites and the electronic structure of SiO on GaAs(001)-c(2x8)/(2x4) was investigated using scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT). At low coverage, STM images reveal that SiO molecules bond Si end down; this is consistent with Si being undercoordinated and O being fully coordinated in molecular SiO. At approximately 5% ML (monolayer) coverage, multiple bonding geometries were observed. To confirm the site assignments from STM images, DFT calculations were used to estimate the total adsorption energies of the different bonding geometries as a function of SiO coverage. STS measurements indicated that SiO pins the Fermi level midgap at approximately 5% ML coverage. DFT calculations reveal that the direct causes of Fermi level pinning at the SiO GaAs(001)-(2x4) interface are a result of either local charge buildups or the generation of partially filled dangling bonds on Si atoms.  相似文献   

3.
Noncovalent bonds have been used to assemble stacks of pi-electron-rich moieties at a surface, generating a pathway for charge transport. The system is comprised of a tetrathiafulvalene (TTF) derivative incorporating two amide groups which fasten the relative orientations of the electroactive moieties in the supramolecular polymer that is formed at the surface of graphite in octanoic acid. Scanning tunneling microscopy (STM) combined with molecular mechanics calculations has been used to prove the structure of the wires, and theory, corroborated with STS experiments, predicts that they are promising superstructures for charge transport.  相似文献   

4.
Direct investigation of the electronic structure of catalyst surfaces on the near-atomic scale in general has not been impossible in the past. However, with the advent of the scanning tunneling microscope (STM), the opportunity arises for incorporating the scanning tunneling spectroscopy (STS) for correlation in-situ surface electronic structure with topography on a sub-nanometer scale. In this paper, we report the STS results of thin film TiO2 and Pt-deposited TiO2 annealed at 450℃. It was found that the TiO2 semiconductor changes from n-type to p-type after Pt deposition.Fig. 1 shows the surface electronic property (Ⅰ-Ⅴ curve) of thin TiO2 film measured in air by STS. A steep descent of the anodic tunneling current at ca.- 1.0 Ⅴ and a rapid ascent of cathodic tunneling current at ca. +2.0V. The zero bias represents the Fermi level (Ef). Ef is situated at the Ecb side indicating that the thin TiO2 film possesses the same band gap as that of bulk TiO2 phase ( Egs =3.0 to 3.2 eV). For the sample of Pt-deposited TiO2 film, Pt/(Pt+Ti+O) atomic ratio≈0.2, which indicates that the surface of TiO2 film is partly covered by Pt particles, and there are two types of Ⅰ-Ⅴ curves to be detected. One of them (Fig.2a)is attributed to the electronic property of TiO2, which has same Egs as that shown in Fig. 1. However, the Ef is transferred to valence side (△≈1eV). This phenomenon hints that TiO2 is doped by an impurity which can introduce h+ into TiO2 lattice.Such a type of defects may be described by Ti1-xPtxO2(h )2x, here Pt+2 as a substitutional site of Ti+4. Fig.2b is the Ⅰ-Ⅴ curve of a Pt particle situated on a TiO2 particle contained Ti1-xPtxO2(h )2x.  相似文献   

5.
We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.  相似文献   

6.
H J Lee  J H Lee  W Ho 《Chemphyschem》2005,6(5):971-975
Structural and electronic properties of single zinc etioporphyrin molecules adsorbed on Al2O3/NiAl(110) were probed by a low-temperature scanning tunneling microscope (STM). Scanning tunneling spectroscopy (STS) revealed progressions of spectral features corresponding to the vibronic states of individual molecules that depend strongly on the molecular conformations. Vibronic features observed by STS were compared with the results from fluorescence induced by tunneling electrons (tunneling-induced fluorescence, TIF).  相似文献   

7.
A combination of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) techniques have been performed on the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36- deposited on highly oriented pyrolytic graphite surfaces. Small, regular molecule clusters, as well as separated single molecules, were observed. The size of the molecules is in agreement with the data determined by X-ray crystallography. In STS measurements, we found a rather large contrast at the expected location of the Cu metal centers in our molecules, i.e., the location of the individual Cu ions in their organic matrix is directly addressable by STS.  相似文献   

8.
A technique for the production of perfect thin-layered Ir coatings on inert Ti supports is developed. The highly textured coatings have some potential uses. Local topography and energy nonuniformness of the surface of such Ir electrodes are studied by electrochemical scanning tunneling microscopy (ESTM) and scanning tunneling spectroscopy (STS). In situ STM images of Ir–Ti textured electrodes with axial texture (111) are obtained with an atomic resolution at potentials of 0.3 to 1.2 V, in 0.05 M H2SO4 as well. Energy states of surfaces of Ir–Ti textured electrodes are studied with an atomic resolution using in situ STS by distance and voltage. Dependences of the tunneling current on the tunneling voltage and the tunneling-gap width are measured at Ir-surface potentials of 0.3 to 1.2 V. Effective potential barrier for the electron tunneling is estimated at different potentials of Ir.  相似文献   

9.
We present an experimental study for the geometric and electronic properties of gold clusters grown in nanometer sized pits on graphite in a broad size range from a few ten to more than 104 atoms per cluster. The growth process and the morphology were characterized in detail with scanning tunneling microscopy, transmission electron microscopy and ultraviolet photoelectron spectroscopy (UPS). The size-dependent quantized electronic structure detected with scanning tunneling spectroscopy (STS) for small gold clusters with a few ten up to about 104 atoms per cluster is discussed qualitatively in terms of simple models. For the specific case of the confined Shockley surface state on the top (1 1 1) facets of large gold clusters with more than 104 atoms per cluster we were able to detect the quantized electronic structure with both techniques, STS and UPS. The analysis shows a quantitative agreement between the density of states extracted from the STS spectra by averaging over the cluster size-distribution, and UPS after a deconvolution of the dynamic final state effect, which leads to a systematic asymmetric broadening of all spectral features. These results for the model system of gold clusters on graphite highlight general features of the cluster–surface system and they demonstrate the consistent combination of STS and UPS for the study of clusters on surfaces.  相似文献   

10.
An overview of the results of the three-dimensional scattering theoretical approach to STM, STS and AFM on clean metal surfaces is presented with special emphasis on the issues of the role of surface states, the effects of the transition from tunneling to ballistic transport, the image inversion and mirroring of ST spectra, the effects of tip-sample interaction and the dynamical relaxation in the sample. Within a theory, going beyond the mean-field approach to the tunneling phenomena, we provide an explanation of the long-lasting puzzle of the anomalously high tip height corrugation amplitude on the Al(111) surface in conjunction with the STS on the same surface.  相似文献   

11.
On‐surface synthesis offers a versatile approach to prepare novel carbon‐based nanostructures that cannot be obtained by conventional solution chemistry. Graphene nanoribbons (GNRs) have potential for a variety of applications. A key issue for their application in molecular electronics is in the fine‐tuning of their electronic properties through structural modifications, such as heteroatom doping or the incorporation of non‐benzenoid rings. In this context, the covalent fusion of GNRs and porphyrins (Pors) is a highly appealing strategy. Herein we present the selective on‐surface synthesis of a Por–GNR hybrid, which consists of two Pors connected by a short GNR segment. The atomically precise structure of the Por–GNR hybrid has been characterized by bond‐resolved scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc‐AFM). The electronic properties have been investigated by scanning tunneling spectroscopy (STS), in combination with DFT calculations, which reveals a low electronic gap of 0.4 eV.  相似文献   

12.
We report on a hybrid scheme to perform efficient and accurate simulations of scanning tunneling spectroscopy (STS) of molecules weakly bonded to surfaces. Calculations are based on a tight binding (TB) technique, including a self-consistent calculation of the electronic structure of the molecule, to predict STS conductance spectra. The use of a local basis makes our model easily applicable to systems with several hundreds of atoms. We performed first-principles density-functional calculations to extract the geometrical and electronic properties of the system. In this way, we can include, in the TB scheme, the effects of structural relaxation upon adsorption on the electronic structure of the molecule. This approach is applied to the study of regioregular poly(3-dodecylthiophene) polymer chains adsorbed on highly oriented pyrolytic graphite. Results of spectroscopic calculations are discussed and compared with recently obtained experimental data.  相似文献   

13.
The adsorption of the aromatic molecule hexabenzobenzene (coronene) on an HOPG(0001) surface was investigated under UHV conditions by means of variable temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Imaging on a mesoscopic scale showed a distribution of coronene islands. These islands are mobile on the surface and can be pinned at step-edges. Zooming in on areas apart from the islands reveals an hexagonal arrangement of coronene molecules in a closed layer. Submolecular resolved molecules consist of bright spots with varying intensity. This variation in intensity is explained with the commensurability of the adlayer. STS investigations were performed for various tip-sample distances, adjusted by the tunneling current setpoint. A gap can be seen for every setpoint, but its width is dependent on the setpoint. The gap for the largest tip-sample distance and therefore the smallest tip-sample interaction is compared with the theoretical value.  相似文献   

14.
Artificial Au atomic chains with individual Pd impurities were assembled from single metal atoms with a scanning tunneling microscope on a NiAl(110) surface. Scanning tunneling spectroscopy (STS) revealed an electronic resonance 2.15 eV above the Fermi energy localized within 4 A of single Pd atom impurities and two electronic resonances 2.25 eV and 2.95 eV above the Fermi energy localized within 8 A of Pd dimer impurities. The emergence of these localized resonances was studied by STS at each stage of the atom-by-atom assembly. Additionally, conductance images of the chains revealed delocalized electronic density oscillations in the pure Au segments of the chains.  相似文献   

15.
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.  相似文献   

16.
Hydrogen-bond formation between ionic adsorbates on an Ag(111) surface under ultrahigh vacuum was studied by scanning tunneling microscopy/spectroscopy (STM/STS), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and molecular dynamics calculations. The adsorbate, 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), self-assembles at low temperatures (250-300 K) into the known open honeycomb motif through neutral hydrogen bonds formed between carboxyl groups, whereas annealing at 420 K leads to a densely packed quartet structure consisting of flat-lying molecules with one deprotonated carboxyl group per molecule. The resulting charged carboxylate groups form intermolecular ionic hydrogen bonds with enhanced strength compared to the neutral hydrogen bonds; this represents an alternative supramolecular bonding motif in 2D supramolecular organization.  相似文献   

17.
Scanning tunneling microscopy (STM) and spectroscopy (STS) are used in this work to investigate the charge-transfer effect at the molecule-substrate interface of substituted metal phthalocyanines. STS results revealed that the apparent energy gaps for both fluorinated phthalocyanines and unsubstituted phthalocyanines are essentially the same, which agree with the hybrid density functional calculations. More interestingly, there is a systematic shift of the energy level of valence bands, possibly as the result of charge-transfer effect at the molecule-substrate interface.  相似文献   

18.
1 INTRODUCTION Metalloporphyrins are intensively studied for many reasons. They have been comprehensively used in biochemistry, analytical chemistry and so on. They play an important role in biological processes such as oxygen transport photosynthesis and enzyme catalysis. They can act as catalysts[1], and can undergo reversible redox reactions in which the site of electron transfer may be localized on the por- phyrin ring or on the central metal ion. Both reaction types are important in…  相似文献   

19.
Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were performed on monolayer film of NiTPP supported on Au(111) under ultrahigh vacuum (UHV) conditions. The constant current STM images show remarkable bias dependence. High resolution STM data clearly show the individual NiTPP molecules and allow easy differentiation between NiTPP and CoTPP reported before. Scanning tunneling spectra, as a function of molecule-tip separation, were acquired over a range of tip motion of 0.42 nm. Spectra do not show the variation in band splitting with tip distance. It appears for molecules such as NiTPP that the average potential at the molecule is essentially the same at the same metal substrate. For molecules of the height of NiTPP, the scanning tunneling spectra should give reliable occupied and unoccupied orbital energies over a wide range of tip-molecule distances.  相似文献   

20.
The one-dimensional intersoliton electron tunneling conduction model in doped polyacetylene, which is a semiconductor-metal transition mechanism, is proposed. With this model, the observed two transition concentrations (y = 0.001 and y = 0.05) can be estimated correctly. In the lightly doped regime (y < 0.001), the three-dimensional intersoliton electron hopping conduction is dominant. At the intermediate concentration regime (0.001 < y < 0.05), the electrons (or holes dopending on the dopants) can tunnel through the pinned solitons within a single chain. These tunneling charge carriers contribute to the high conductivity. But these tunneling charge carriers can give no Pauli susceptibility since they are not band-type carriers. Instead, they are transient carriers tunneling between the two soliton sites. Finally, in the high concentration regime (y > 0.05), the pinned soliton wave function can overlap each other forming a soliton liquid. In this stage, the bond alternation of the trans-polyacetylene chain vanishes being equivalent to the uniform bond length chain. Therefore, the metallic conductivity and finite Pauli susceptibility are expected consistent with the observed experimental results. However, since this metallic state is formed by the soliton liquid it is not a single particle like metal. The internal vibrational modes and other signals characteristic to the soliton can persist in the metallic polyacetylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号