首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific-heat measurements on the cluster compound Au55(P(C6H5)3)12Cl6 at temperatures 0.06 K ≤T≤3 K and in magnetic fields 0≤B≤6 T are reported. While above 0.6 K the specific heatC is dominated by the inter-cluster vibrational contribution observed previously, an anomalous increase ofC towards lowT is observed below 0.3 K, withCT ?2. This contribution develops into a Schottky-like anomaly forB≥0.4 T, indicating that it might be attributed to local moments which are also observed in ESR measurements. From the height of the anomaly one can infer that approximately one tenth of the Au55 clusters carry a magnetic moment. For 0.6 K≤T≤1 K andB=0 our data indicate the absence of a linear electronic specific-heat contribution expected for bulk Au. This possibly constitutes the first direct observation of the quantum-size effect on electronic energy levels in the specific heat.  相似文献   

2.
3.
Soluble ethylene polymerization catalysts derived from (π-C5H5)2Ti(R)Cl and R ′AlCl2, where R = methyl or phenyl and R ′ = methyl or ethyl, were studied both by polymerization kinetics at 0°C and by diagnostic experiments. It was found that the first insertion of ethylene into the Ti? R bond is difficult when R = methyl or phenyl, and for this reason these catalysts show a different overall behavior than when R = ethyl or higher alkyl.  相似文献   

4.
5.
6.
The Crystal Structure of (C6H5)3SiSH and (C6H5)3SiSBr and the Preparation of the Iodosulfane (C6H5)3SiSI The preparation of the halogenosulfanes Ph3SiSBr and Ph3SiSI from Ph3SiSH and N-halogenosuccinimide is reported. They are characterized by vibrational spectroscopic measurements. Ph3SiSBr crystallizes in space group P1 with a = 899.3(8) pm, b = 941.3(7) pm, c = 1 051.4(7) pm, α = 109.88(5)°, β = 99.23(6)°, γ = 96.78(6)° and Z = 2. Ph3SiSH crystallizes in space group P21/c with a = 1 879.4(8), b = 966.3(5), c = 1 845.2(9), β = 107.84(4), Z = 8. The halogenosulfanes decompose in polar solvents by formation of sulphur and triphenylsilanhalide.  相似文献   

7.
8.
9.
10.
Conclusions The authors have synthesized anilinium chloranilate (NH3C6H5)2(C6O4Cl2) (I) and acid ammonium chloranilate dihydrate NH4H5O2(C6O4C12) (II). By x-ray structural analysis they have established their crystal structures. In crystals of NH4H5O2(C6O4Cl2) they find the ion H5O 2 + with the unusual O-H-O bond length of 2.81 A. The anions of chloranilic acid in crystals (I) and (II) have equal charges but different structures.Translated from IzvestiyaAkademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 487–489, March, 1981.  相似文献   

11.
12.
13.
14.
To date only one product, biphenyl, has been reported to be produced from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions. In this study, we have investigated some unique products of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via both experimental observation and theoretical modeling. In the experimental study, gas-phase reaction products produced from the pyrolysis of selected aromatics and aromatic/acetylene mixtures were detected by an in situ technique, vacuum ultraviolet (VUV) single photon ionization (SPI) time-of-flight mass spectrometry (TOFMS). The mass spectra revealed a remarkable correlation in mass peaks at m/z = 154 {C(12)H(10) (biphenyl)} and m/z = 152 {C(12)H(8) (?)}. It also demonstrated an unexpected correlation among the HACA (hydrogen abstraction and acetylene addition) products at m/z = 78, 102, 128, 152, and 176. The analysis of formation routes of products suggested the contribution of some other isomers in addition to a well-known candidate, acenaphthylene, in the mass peak at m/z = 152 (C(12)H(8)). Considering the difficulties of identifying the contributing isomers from an observed mass number peak, quantum chemical calculations for the above-mentioned reactions were performed. As a result, cyclopenta[a]indene, as-indacene, s-indacene, biphenylene, acenaphthylene, and naphthalene appeared as novel products, produced from the possible channels of C(6)H(5) + C(6)H(6)/C(6)H(5) reactions rather than from their previously reported formation pathways. The most notable point is the production of acenaphthylene and naphthalene from C(6)H(5) + C(6)H(6)/C(6)H(5) reactions via the PAC (phenyl addition-cyclization) mechanism because, until now, both of them have been thought to be formed via the HACA routes. In this way, this study has paved the way for exploring alternative paths for other inefficient HACA routes using the PAC mechanism.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号