首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

2.
Consider the Riesz product $\mu _a = \mathop \prod \limits_{n = 1}^\infty (1 + r\cos (q^n t + \varphi _n ))$ . We prove the following approximative formula for the dimension ofμ a. $$\dim \mu _a = 1 - \frac{1}{{\log q}}\int_0^{2\pi } {(1 + r\cos x)\log (1 + r\cos x)\frac{{dx}}{{2\pi }} + 0\left( {\frac{r}{{q^2 \log q}}} \right).}$$   相似文献   

3.
The main goal of this paper is to estimate the magnitude of the second largest eigenvalue in absolute value, λ2, of (the adjacency matrix of) a randomd-regular graph,G. In order to do so, we study the probability that a random walk on a random graph returns to its originating vertex at thek-th step, for various values ofk. Our main theorem about eigenvalues is that $$E|\lambda _2 (G)|^m \leqslant \left( {2\sqrt {2d - 1} \left( {1 + \frac{{\log d}}{{\sqrt {2d} }} + 0\left( {\frac{1}{{\sqrt d }}} \right)} \right) + 0\left( {\frac{{d^{3/2} \log \log n}}{{\log n}}} \right)} \right)^m $$ for any \(m \leqslant 2\left\lfloor {log n\left\lfloor {\sqrt {2d - } 1/2} \right\rfloor /\log d} \right\rfloor \) , where E denotes the expected value over a certain probability space of 2d-regular graphs. It follows, for example, that for fixedd the second eigenvalue's magnitude is no more than \(2\sqrt {2d - 1} + 2\log d + C'\) with probability 1?n ?C for constantsC andC′ for sufficiently largen.  相似文献   

4.
Ω-theorems for some automorphic L-functions and, in particular, for the Rankin?Selberg L-function L(s, f × f) are considered. For example, as t tends to infinity, $$ \log \left| {L\left( {\frac{1}{2}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{1/2 }}} \right) $$ and $$ \log \left| {L\left( {{\sigma_0}+it,f\times f} \right)} \right|={\varOmega_{+}}\left( {{{{\left( {\frac{{\log t}}{{\log\;\log t}}} \right)}}^{{1-{\sigma_0}}}}} \right) $$ For a fixed σ 0 $ \left( {\frac{1}{2},1} \right) $ . Bibliography: 15 titles.  相似文献   

5.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

6.
Explicit inversion formulas of Balakrishnan–Rubin type and a characterization of Bessel potentials associated with the Laplace–Bessel differential operator are obtained. As an auxiliary tool the B-metaharmonic semigroup is introduced and some of its properties are investigated.  相似文献   

7.
We show that $$|f(x) - V_{n,m} (f,x)| \leqslant \frac{C}{{m + 1}}\sum\nolimits_{h = n - m}^n {E_k [1 + In\left( {\frac{{n - m}}{{h - n + m + 1}}} \right)],}$$ for every continuous function with period 2Μ, where C is an absolute constant and 0 ≤ m ≤ n, and we then apply this bound.  相似文献   

8.
The longitudinal dispersion of a pulse of passive scalar contaminant within a flow that is unchanging in the downstream direction is established to be a function of the mean-velocity-history of molecules from a uniform distribution on the flow cross-section. The specific case of laminar flow between parallel plates is investigated in detail, wherein it is found that $$\frac{1}{2}\frac{{\overline {d\eta (t)^2 } }}{{dt}} = \frac{9}{{2\pi ^6 }}\frac{{\bar U^2 d^2 }}{k}\sum\limits_{n = 1}^\infty {\frac{1}{{n^6 }}} \left( {1 - \exp \left( {\frac{{ - (2n\pi )^2 tK}}{{d^2 }}} \right)} \right),$$ where η(t) is the displacement relative to an axis located byūt whenū is the discharge velocity,K is the molecular diffusivity andd is the plate separation. This flow is used to show that the molecule mean velocity-histories can be approximated by a function that does not directly depend on the release position of the molecule on the flow cross-section. The results of a numerical simulation of the dispersion in this flow are presented for comparison.  相似文献   

9.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

10.
The author considers a class F of analytic functions real in the interval [-1, 1] and bounded in the unit circle. As an estimate of the optimal quadrature error R(n) over the class F it is shown that $$_e - \left( {2\sqrt 2 + \frac{1}{{\sqrt 2 }}} \right)\pi \sqrt n \leqslant R(n) \leqslant e^{ - \frac{\pi }{{\sqrt 2 }}n} .$$ With the additional condition that \(\mathop {max}\limits_{x \in [ - 1,1]}\) ¦f(x)¦?B, an estimate is obtained for the ?-entropy H?(F): $$\frac{8}{{27}}\frac{{(1n2)^2 }}{{\pi ^2 }} \leqslant \mathop {\lim }\limits_{\varepsilon \to 0} \frac{{H_\varepsilon (F)}}{{\left( {\log \frac{1}{\varepsilon }} \right)^3 }} \leqslant \frac{2}{{\pi ^2 }}(1n2)^2 .$$   相似文献   

11.
In his second notebook, Ramanujan says that $$\frac{q}{{x + }}\frac{{q^4 }}{{x + }}\frac{{q^8 }}{{x + }}\frac{{q^{12} }}{{x + }} \cdots = 1 - \frac{{qx}}{{1 + }}\frac{{q^2 }}{{1 - }}\frac{{q^3 x}}{{1 + }}\frac{{q^4 }}{{1 - }} \cdots $$ “nearly” forq andx between 0 and 1. It is shown in what senses this is true. In particular, asq → 1 the difference between the left and right sides is approximately exp ?c(x)/(l-q) wherec(x) is a function expressible in terms of the dilogarithm and which is monotone decreasing with c(0) = π2/4,c(1) = π2/5; thus the difference in question is less than 2· l0?85 forq = 0·99 and allx between 0 and 1.  相似文献   

12.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

13.
A multidimensional continued fraction algorithm is a generalization of the ordinary continued fraction algorithm which approximates a vector η=(y 1,...,y n ) by a sequence of vectors \(\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right)\) . If 1,y 1,...,y n are linearly independent over the rationals, then we say that the expansion of η isstrongly convergent if $$\mathop {\lim }\limits_{j \to \infty } \left| {\left( {\frac{{a_{j,1} }}{{a_{j,n + 1} }}, \ldots ,\frac{{a_{j,n} }}{{a_{j,n + 1} }}} \right) - \eta } \right| = 0.$$ This means that the algorithm converges at an asymptotically faster rate than would be guaranteed just by picking a denominator at random. The ordinary continued fraction algorithm can be defined using the Farey sequence, approximating a number by the endpoints of intervals which contain it. Analogously, we can define a Farey netF n, m to be a triangulation of the set of all vectors \(\left( {\frac{{a_1 }}{{a_{n + 1} }}, \ldots ,\frac{{a_n }}{{a_{n + 1} }}} \right)\) witha n+1 ≤m into simplices of determinant ±1, and use this algorithm to define a multidimensional continued fraction for η in which the approximations are the vertices of the simplices containing η in a sequence of Farey nets. The concept of a Farey net was proposed by A. Hurwitz, and R. Mönkemeyer developed a specific continued fraction algorithm based on it. We show that Mönkemeyer's algorithm discovers dependencies among the coordinates of η in two dimensions, but that no continued fraction algorithm based on Farey nets can discover dependencies in three or more dimensions, and none can be strongly convergent, even in two dimensions. Thus there are no good multidimensional algorithms based on Farey nets.  相似文献   

14.
Let G be a graph with degree sequence ( dv). If the maximum degree of any subgraph induced by a neighborhood of G is at most m, then the independence number of G is at least , where fm+1( x) is a function greater than for x> 0. For a weighted graph G = ( V, E, w), we prove that its weighted independence number (the maximum sum of the weights of an independent set in G) is at least where wv is the weight of v.  相似文献   

15.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

16.
We study the class of (m constraint,n variable) set covering problems which have no more thank variables represented in each constraint. Letd denote the maximum column sum in the constraint matrix, letr=[m/d]?1, and letZ g denote the cost of a greedy heuristic solution. Then we prove $$\begin{gathered} Zg \leqslant 1 + r + m - d - \left[ {mk \cdot MAX\left\{ {\frac{{2r}}{{2n - r - 1}},\ln \frac{n}{{n - r}}} \right\}} \right. \hfill \\ \left. { - kd \cdot MIN\left\{ {\frac{{r(r + 1)}}{{2(n - r)}},n \cdot \ln \frac{{n - 1}}{{n - r - 1}} - 1} \right\}} \right]. \hfill \\ \end{gathered} $$ This provides the firsta priori nontrivial upper bound discovered on heuristic solution cost (and thus on optimal solution cost) for the set covering problem. An example demonstrates that this bound is attainable, both for a greedy heuristic solution and for the optimal solution. Numerical examples show that this bound is substantially better than existing bounds for many problem instances. An important subclass of these problems occurs when the constraint matrix is a circulant, in which casem=n andk=d=[αη] for some 0<α<1. For this subclass we prove $$\mathop {\lim }\limits_{n \to \infty } Zg/n \leqslant \frac{{\alpha ^2 }}{2}[1/\alpha ][1/\alpha ].$$   相似文献   

17.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

18.
In this paper we construct a homogeneous variational difference scheme for the diffusion equation assuming its coefficients to be bounded and measurable; the order of convergence of the scheme is O(h2). We consider the boundary value problem (1) $$\frac{d}{{dx}}\left( {K(x)\frac{{du}}{{dx}}} \right) - g(x)u = - \frac{{dF}}{{dx}},0< x< X$$ subject to the boundary conditions (2) $$u(0) = a,u(X) = b$$ .  相似文献   

19.
In the case of Zd (d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k ∈ Zd } i.i.d. random variables with mean 0, Sn = ∑k≤nXk and Vn2 = ∑j≤nX2j, the precise asymptotics for ∑n1/|n|(log|n|)dP(|Sn/vn|≥ ε√loglog|n|) and ∑n(logn|)δ/|n|(log|n|)d-1 P(|Sn/Vn| ≥ ε√log n), as ε ↘ 0, is established.  相似文献   

20.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号