首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Number Theory》1987,25(3):308-312
If p(n, k) is the number of partitions of n into parts ≤k, then the sequence {p(k, k), p(k + 1, k),…} is periodic modulo a prime p. We find the minimum period Q = Q(k, p) of this sequence. More generally, we find the minimum period, modulo p, of {p(n; T)}n ≥ 0, the number of partitions of n whose parts all lie in a fixed finite set T of positive integers. We find the minimum period, modulo p, of {S(k, k), S(k + 1, k),…}, where these are the Stirling numbers of the second kind. Some related congruences are proved. The methods involve the use of cyclotomic polynomials over Zp[x].  相似文献   

2.
In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting vertically the zeros of (1-x)2=P (a,β) n(x),a>0,β>0,(1-x)P(a,β) n(x),a>0,β>-1,(1+x)P P(a,β) n(x),a>-1,β0 and P(a,β) n(x),a>-1,β>-1, respectively, onto the unit circle, where P(a,β) n(x),a>-1,β>-1, stands for the n-th Jacobi polynomial. Moreover, a result of Saff and Walsh is also extended.  相似文献   

3.
Summary. We investigate the bounded solutions j:[0,1]? X \varphi:[0,1]\to X of the system of functional equations¶¶j(fk(x))=Fk(j(x)),    k=0,?,n-1,x ? [0,1] \varphi(f_k(x))=F_k(\varphi(x)),\;\;k=0,\ldots,n-1,x\in[0,1] ,(*)¶where X is a complete metric space, f0,?,fn-1:[0,1]?[0,1] f_0,\ldots,f_{n-1}:[0,1]\to[0,1] and F0,...,Fn-1:X? X F_0,...,F_{n-1}:X\to X are continuous functions fulfilling the boundary conditions f0(0) = 0, fn-1(1) = 1, fk+1(0) = fk(1), F0(a) = a,Fn-1(b) = b,Fk+1(a) = Fk(b), k = 0,?,n-2 f_{0}(0) = 0, f_{n-1}(1) = 1, f_{k+1}(0) = f_{k}(1), F_{0}(a) = a,F_{n-1}(b) = b,F_{k+1}(a) = F_{k}(b),\,k = 0,\ldots,n-2 , for some a,b ? X a,b\in X . We give assumptions on the functions fk and Fk which imply the existence, uniqueness and continuity of bounded solutions of the system (*). In the case X = \Bbb C X= \Bbb C we consider some particular systems (*) of which the solutions determine some peculiar curves generating some fractals. If X is a closed interval we give a collection of conditions which imply respectively the existence of homeomorphic solutions, singular solutions and a.e. nondifferentiable solutions of (*).  相似文献   

4.
Let T = (V, A) be a tournament with p vertices. T is called completely strong path-connected if for each arc (a, b) ∈ A and k (k = 2, 3,…, p), there is a path from b to a of length k (denoted by Pk(a, b)) and a path from a to b of length k (denoted by Pk(a, b)). In this paper, we prove that T is completely strong path-connected if and only if for each arc (a, b) ∈ A, there exist P2(a, b), P2(a, b) in T, and T satisfies one of the following conditions: (a) T/T0-type graph, (b) T is 2-connected, (c) for each arc (a, b) ∈ A, there exists a Pp?1(a, b) in T.  相似文献   

5.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

6.
Denote by xn,k(α,β) and xn,k(λ)=xn,k(λ−1/2,λ−1/2) the zeros, in decreasing order, of the Jacobi polynomial P(α,β)n(x) and of the ultraspherical (Gegenbauer) polynomial Cλn(x), respectively. The monotonicity of xn,k(α,β) as functions of α and β, α,β>−1, is investigated. Necessary conditions such that the zeros of P(a,b)n(x) are smaller (greater) than the zeros of P(α,β)n(x) are provided. A. Markov proved that xn,k(a,b)<xn,k(α,β) (xn,k(a,b)>xn,k(α,β)) for every n and each k, 1kn if a>α and b<β (a<α and b>β). We prove the converse statement of Markov's theorem. The question of how large the function fn(λ) could be such that the products fn(λ)xn,k(λ), k=1,…,[n/2] are increasing functions of λ, for λ>−1/2, is also discussed. Elbert and Siafarikas proved that fn(λ)=(λ+(2n2+1)/(4n+2))1/2 obeys this property. We establish the sharpness of their result.  相似文献   

7.
Summary Defining the function Δn, 1,k;x(J) asΔn, 1,k;x(J)=J n+1(x)−J n(x)J n+k+1(x) associated with the Bessel functionJ n(x), we derive a series of products of Bessel functions for Δn, f, k, x (J). Whenk=1,k;x (J) becomes Turàn expression for Bessel functions. Some consequences have been pointed out.
Riassunto Definita la Δn, f, k, x (J) come Δn, f, k, x, (J)=J n+1(x)J n+k(x)-J n(n+k+1)(x) associata alla funzioneJ n(x) di Bessel, si ricava una serie di prodotti di funzioni di Bessel per Δn, f, k, x, (J). 3 Quandok=1, Δn, f, k, x, (J) diventa una espressione di Turàn per le funzioni di 2 Bessel, vengono inoltre indicate alcune altre conseguenze.
  相似文献   

8.
Let (T1, x1), (T2, x2), …, (Tn, xn) be a sample from a multivariate normal distribution where Ti are (unobservable) random variables and xi are random vectors in Rk. If the sample is either independent and identically distributed or satisfies a multivariate components of variance model, then the probability of correctly ordering {Ti} is maximized by ranking according to the order of the best linear predictors {E(Ti|xi)}. Furthermore, it orderings are chosen according to linear functions {bxi} then the conditional probability of correct order given (Ti = t1; i = 1, …, n) is maximized when bxi is the best linear predictor. Examples are given to show that linear predictors may not be optimal and that using a linear combination other that the best linear predictor may give a greater probability of correctly ordering {Ti} if {(Ti, xi)} are independent but not identically distributed, or if the distributions are not normal.  相似文献   

9.
LetE be a compact set inR n (n≧2), and denote byV 0(E) the number of the components ofE. Letp=1,2, ...,n?1;k=0,1, ...,p, and $$V_k (E;n,p) = \int\limits_{\Omega _k^n } {V_0 (E \cap \tau )^{{{(n - p)} \mathord{\left/ {\vphantom {{(n - p)} {(n - k)}}} \right. \kern-\nulldelimiterspace} {(n - k)}}} d\mu _\tau ,}$$ whereΩ k n is the set of all (n-k)-dimensional hyperplanesτ?R n and τ is the Haar measure on the spaceΩ k n ; furthermore, let $$V_n (E;n,n - 1) = mes_n E.$$ . Theorem. Let E?Rn, p=1, 2 ..., n?1, Vp+1(E;n,p)=0, and Vk(E; n, p)<∞ for k= =0,1, ..., p. Then the contingency of the set E at a point xE coincides with a certain p-dimensional hyperplane for almost all points xE in the sense of Hausdorff p-measure.  相似文献   

10.
1Intr0ducti0nLetAden0tethesetofallfunctionsanalyticinA={z:Izl<1}.LetB={W:WEAandIW(z)l51}.Aisalocallyconvexlineaztop0l0gicalspacewithrespecttothetopologyofuniformconvergenceon`c0mpact8ubsetsofA-LetTh(c1,'tc.-1)={p(z):p(z)EA,Rop(z)>0,p(z)=1 clz czzz ' c.-lz"-l 4z" ',wherecl,',cn-1areforedcomplexconstants}.LetTh,.(b,,-..,b,-,)={p(z):P(z)'EAwithReP(z)>Oandp(z)=1 blz ' b.-lz"-l 4z" '-,wherebl,-'-jbu-1areffeedrealconstantsanddkarerealnumbersf0rk=n,n 1,'--}-LetTu(l1,'i'tI.-1)={…  相似文献   

11.
For k a non-negative integer, let Pk(n) denote the kth largest prime factor of n where P0(n) = +∞ and if the number of prime factors of n is less than k, then Pk(n) = 1. We shall study the asymptotic behavior of the sum Ψk(x, y; g) = Σ1 ≤ nx, Pk(n) ≤ yg(n), where g(n) is an arithmetic function satisfying certain general conditions regarding its behavior on primes. The special case where g(n) = μ(n), the Möbius function, is discussed as an application.  相似文献   

12.
We prove that if a functionfC (1) (I),I: = [?1, 1], changes its signs times (s ∈ ?) within the intervalI, then, for everyn > C, whereC is a constant which depends only on the set of points at which the function changes its sign, andk ∈ ?, there exists an algebraic polynomialP n =P n (x) of degree ≤n which locally inherits the sign off(x) and satisfies the inequality $$\left| {f\left( x \right) - P_n \left( x \right)} \right| \leqslant c\left( {s,k} \right)\left( {\frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right)\omega _k \left( {f'; \frac{1}{{n^2 }} + \frac{{\sqrt {1 - x^2 } }}{n}} \right), x \in I$$ , where ω k (f′;t) is thekth modulus of continuity of the functionf’. It is also shown that iffC (I) andf(x) ≥ 0,xI then, for anynk ? 1, there exists a polynomialP n =P n (x) of degree ≤n such thatP n (x) ≥ 0,xI, and |f(x) ?P n (x)| ≤c(k k (f;n ?2 +n ?1 √1 ?x 2),xI.  相似文献   

13.
The Jacobsthal functiong(n) is defined as the maximal distance between two integers relatively prime ton. Letk, l,... be natural numbers, letp 1,p 2,... be primes. From $$3 \leqq l \leqq p_1< ...< p_{l - 1}< k + 2 - l \leqq p_l< ...< p_k $$ followsTheorem 1. g(p 1 ...p k )≦g(p 1 ...p l?1 )g(p l ...p k )=l(k+2?l), ifkl is large enough.Theorem 1′. From (1) and12≦l followsg(p 1 ...p k )≦l(k+2?l).  相似文献   

14.
LetP(x, A) be a transition probability on a measurable space (S, Σ) and letX n be the associated Markov chain.Theorem. LetfB(S, Σ). Then for anyxS we haveP x a.s. $$\mathop {\underline {\lim } }\limits_{n \to \infty } \frac{1}{n}\sum\limits_{k = 1}^n {f(X_k ) \geqslant } \mathop {\underline {\lim } }\limits_{n \to \infty } \mathop {\inf }\limits_{x \in S} \frac{1}{n}\sum\limits_{k = 1}^n {P^k f(x)} $$ and (implied by it) a corresponding inequality for the lim. If 1/n k=1 n P k f converges uniformly, then for everyx∈S, 1/n k=1 n f(X k ) convergesP x a.s. Applications are made to ergodic random walks on amenable locally compact groups. We study the asymptotic behavior of 1/n k=1 n μ k *f and of 1/n k=1 n f(X k ) via that ofΨ n *f(x)=m(A n )?1 An f(xt), where {A n } is a Følner sequence, in the following cases: (i)f is left uniformly continuous (ii) μ is spread out (iii)G is Abelian. Non-Abelian Example: Let μ be adapted and spread-out on a nilpotent σ-compact locally compact groupG, and let {A n } be a Følner sequence. If forfB(G, ∑) m(A n )?1 An f(xt)dm(t) converges uniformly, then 1/n k=1 n f(X k ) converges uniformly, andP x convergesP x a.s. for everyxG.  相似文献   

15.
We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set $\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\}We consider the spectral decomposition of A, the generator of a polynomially bounded n-times integrated group whose spectrum set s(A)={ilk;k ? \mathbb\mathbbZ*}\sigma(A)=\{i\lambda_{k};k\in\mathbb{\mathbb{Z}}^{*}\} is discrete and satisfies ?\frac1|lk|ldkn < ¥\sum \frac{1}{|\lambda_{k}|^{\ell}\delta_{k}^{n}}<\infty , where is a nonnegative integer and dk=min(\frac|lk+1-lk|2,\frac|lk-1-lk|2)\delta _{k}=\min(\frac{|\lambda_{k+1}-\lambda _{k}|}{2},\frac{|\lambda _{k-1}-\lambda _{k}|}{2}) . In this case, Theorem 3, we show by using Gelfand’s Theorem that there exists a family of projectors (Pk)k ? \mathbb\mathbbZ*(P_{k})_{k\in\mathbb{\mathbb{Z}}^{*}} such that, for any xD(A n+ ), the decomposition ∑P k x=x holds.  相似文献   

16.
On the basis of a random sample of size n on an m-dimensional random vector X, this note proposes a class of estimators fn(p) of f(p), where f is a density of X w.r.t. a σ-finite measure dominated by the Lebesgue measure on Rm, p = (p1,…,pm), pj ≥ 0, fixed integers, and for x = (x1,…,xm) in Rm, f(p)(x) = ?p1+…+pm f(x)/(?p1x1 … ?pmxm). Asymptotic unbiasedness as well as both almost sure and mean square consistencies of fn(p) are examined. Further, a necessary and sufficient condition for uniform asymptotic unbisedness or for uniform mean square consistency of fn(p) is given. Finally, applications of estimators of this note to certain statistical problems are pointed out.  相似文献   

17.
With any multiset n we associate the numbers O(n, k) of compositions of n into exactly k parts. The polynomials kn(x) = ΣkO(n, k)xk are shown to form a multiindexed Sturm sequence over (?1, 0). As consequences we obtain the unimodality of the sequence {O(n, k)}k for any n, of the generalized Eulerian numbers, and of the number of compositions of n with certain supplementary conditions imposed on the parts. The strong logarithmic concavity of the Stirling numbers of the second kind also follows as a corollary.  相似文献   

18.
Let c n,k (k=1,...,n) the n zeroes of the monic orthogonal polynomials family P n (x). The centroid of these zeroes: $s_n=\frac1n \sum\limits^n_{k=1}c_{n,k}$ controls globally the distribution of the zeroes, and it is relatively easy to obtain information on s n , like bounds, inequalities, parameters dependence, ..., from the links between s n , the coefficients of the expansion of P n (x), and the coefficients β n , γ n in the basic recurrence relation satisfied by P n (x). After a review of basic properties of the centroid on polynomials, this work gives some results on the centroid of a large class of orthogonal polynomials.  相似文献   

19.
The local behavior of the iterates of a real polynomial is investigated. The fundamental result may be stated as follows: THEOREM. Let xi, for i=1, 2, ..., n+2, be defined recursively by xi+1=f(xi), where x1 is an arbitrary real number and f is a polynomial of degree n. Let xi+1?xi≧1 for i=1, ..., n + 1. Then for all i, 1 ≦i≦n, and all k, 1≦k≦n+1?i, $$ - \frac{{2^{k - 1} }}{{k!}}< f\left[ {x_1 ,... + x_{i + k} } \right]< \frac{{x_{i + k + 1} - x_{i + k} + 2^{k - 1} }}{{k!}},$$ where f[xi, ..., xi+k] denotes the Newton difference quotient. As a consequence of this theorem, the authors obtain information on the local behavior of the solutions of certain nonlinear difference equations. There are several cases, of which the following is typical: THEOREM. Let {xi}, i = 1, 2, 3, ..., be the solution of the nonlinear first order difference equation xi+1=f(xi) where x1 is an arbitrarily assigned real number and f is the polynomial \(f(x) = \sum\limits_{j = 0}^n {a_j x^j } ,n \geqq 2\) . Let δ be positive with δn?1=|2n?1/n!an|. Then, if n is even and an<0, there do not exist n + 1 consecutive increments Δxi=xi+1?xi in the solution {xi} with Δxi≧δ. The special case in which the iterated polynomial has integer coefficients leads to a “nice” upper bound on a generalization of the van der Waerden numbers. Ap k -sequence of length n is defined to be a strictly increasing sequence of positive integers {x 1, ...,x n } for which there exists a polynomial of degree at mostk with integer coefficients and satisfyingf(x j )=x j+1 forj=1, 2, ...,n?1. Definep k (n) to be the least positive integer such that if {1, 2, ...,p k (n)} is partitioned into two sets, then one of the two sets must contain ap k -sequence of lengthn. THEOREM. pn?2(n)≦(n!)(n?2)!/2.  相似文献   

20.
Let {pk(x; q)} be any system of the q-classical orthogonal polynomials, and let be the corresponding weight function, satisfying the q-difference equation Dq(σ)=τ, where σ and τ are polynomials of degree at most 2 and exactly 1, respectively. Further, let {pk(1)(x;q)} be associated polynomials of the polynomials {pk(x; q)}. Explicit forms of the coefficients bn,k and cn,k in the expansions
are given in terms of basic hypergeometric functions. Here k(x) equals xk if σ+(0)=0, or (x;q)k if σ+(1)=0, where σ+(x)σ(x)+(q−1)xτ(x). The most important representatives of those two classes are the families of little q-Jacobi and big q-Jacobi polynomials, respectively.Writing the second-order nonhomogeneous q-difference equation satisfied by pn−1(1)(x;q) in a special form, recurrence relations (in k) for bn,k and cn,k are obtained in terms of σ and τ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号