首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Indium tin oxide (ITO) coated polycarbonate (PC) multilayer flexible substrates have been subjected to different cycles of bending. Atomic force microscopy (AFM) results on bent ITO surfaces show that bending results in much rougher ITO surfaces. The Ca degradation test shows that the ITO cracks are perpendicular to the flexing direction and that barrier performance deteriorated after bending. When an organic light emitting device is fabricated on the bent substrate, electrical and optical performance decrease. This can be attributed to moisture and oxygen permeated through deteriorated substrate and barrier degraded polymer and oxidized cathode materials. However, optical microscopy observation found that the dark spots have less relationship with the size and position of the cracks on oxide film. Instead to a great extent, they are directly related to the ITO surface spikes. The results further prove that the dark spot is due to electrical stress generated by intense local current at sharp anode and cathode points, which degrade the polymer causing the formation of the dark center. PACS 78.66.Qn; 82.35.Cd; 62.60.Mk  相似文献   

2.
3.
Degradation (D) of organic light-emitting diodes (OLEDs) based on new different-ligand complexes of terbium salicylate (Tb(Sal)3(TPPO)2) and 2-phenoxybenzoate (Tb(pobz)3(TPPO)2) with triphenyl phosphinoxide (TPPO) was studied. Initial reversible D is associated with charge carrier trap filling. A temperature increase, applied stress relief, and short-term irradiation with UV light lead to trapped charge carrier release and electroluminescence (EL) intensity recovery. During strong heating, irreversible D is observed after the recovery; this D requires in addition an electric field (EF). Intense UV light causes D without EF. The use of ac bias voltage eliminates reversible D, and sealing retards irreversible long-term D.  相似文献   

4.
InGaAlP/GaAs red light-emitting diodes (LEDs) with a sub-wavelength moth-eye structure at the output surface were demonstrated. A high-resolution polydimethylsiloxane (h-PDMS) casting material was used for the fabrication of the moth-eye structure from polymer template which was fabricated by hot embossing. The h-PDMS mold was subsequently used to transfer the nanostructure on the output surface of the LED by soft embossing. We succeeded in forming a close packed hexagonal array of hemispheres with 300 nm pitch, and 128 nm depth. With 10 mA driving current, the corresponding efficiency (cd/A) of moth-eye-structured light-emitting diodes was enhanced by 36% compared with those of non-patterned LEDs. The experimental results are in agreement with the results of a theoretical analysis of the effect of the moth-eye structure.  相似文献   

5.
The triplet to singlet exciton formation ratio in a MEH-PPV light-emitting diode is measured by comparing the triplet-induced absorptions with optical and electric excitations at the same singlet exciton density. The ratio is a strong universal decreasing function of the averaged electric field. Using 4 ns for singlet to triplet intersystem crossing time, the ratio is significantly larger than the spin-independent value 3 at intermediate field but is reduced to about 2 for higher field.  相似文献   

6.
7.
8.
The multiple color-matching schemes that could improve the color rendering index for phosphor-free white LEDs are discussed.Then we review a few of the recent research directions for phosphor-free white LEDs,which include the development of monolithic GaN-based white LEDs and hybrid integrated GaN-based and Al Ga In P-based white LEDs.These development paths will pave the way toward commercial application of phosphor-free white LEDs in the coming years.  相似文献   

9.
In the present paper the electroluminescence of PIN diodes with either strained SiGe/Si or Ge islands in the i-region has been investigated experimentally and by quantitative modelling. The modelling helped to improve the diode structure. Consequently, diodes with strained Si0.80Ge0.20 could be improved so as to reveal emission up to room temperature, if the thickness was high enough. To overcome the thickness limitation due to plastic relaxation, we used selective epitaxy on small areas. We also present results for diodes with Ge islands in the active region. The internal quantum efficiency of light emitting diodes with strained SiGe was at room temperature 10−4, while diodes with islands emitted ten times less light.  相似文献   

10.
In the field of electroluminescent organic materials, conjugated polymers have attracted much attention over recent years owing to their versatile synthesis, their relative ease of processing and the possibility of establishing predictive structure–function relationships between chemical structures and optical properties. This review article highlights the advances made in the synthesis of conjugated polymers for use in light-emitting devices (LEDs) covering the last two years. Research efforts were largely directed towards the improvement of the synthesis of monomers and polymers involving classical polymer structures such as poly( p -phenylene vinylene)s (PPVs), poly( p -phenylene)s (PPPs), poly(2,7-fluorene)s (PFs), or poly(2,5-thienylene)s (PTs). Control of the color of emission by modulation of the effective conjugation length, improving balanced charge injection and transport properties by introduction of electron-donating or -withdrawing moieties directly into the polymer backbone or enhancement of the emission efficiency by attempts to influence film morphology are some examples of recent research directions. All these investigations contributed to a significantly better understanding of the chemical and physical processes spanning topics from the manufacturing process to the operation of LEDs and leading to the announcement of the first commercial products. In addition to the classical π -conjugated polymers a few examples of rather unusual structures have also emerged.  相似文献   

11.
We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.  相似文献   

12.
Improved performance of organic light-emitting diodes (OLEDs) as obtained by a mixed layer was investigated. The OLEDs with a mixed layer which were composed of N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1,1′-biphenyl-4,4′-diamine (NPB), tris-(8-hydroxyquinolato) aluminum (Alq3) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) showed the highest brightness and efficiency, which reached 19048 cd/m2 at 17 V and 4.3 cd/A at 10 mA/cm2, respectively. The turn-on voltage of the device is 2.6 V. Its Commission Internationale del’Eclairage (CIE) coordinate is (0.497, 0.456) at 17 V, and the CIE coordinates of the device are largely insensitive to the driving voltages, which depicts stabilized yellow color.  相似文献   

13.
This article presents a study of the possibilities of optimising the electroluminescence (EL) efficiency of dislocation-engineered silicon light-emitting diodes (DELEDs). The diodes were produced by implantation of boron in n-type (100)Si wafers, at a constant ion energy and fluence, of 30 keV and 1×1015 ions/cm2, respectively. The density and the areal coverage by dislocation loops were varied by applying different annealing times in a rapid thermal processing, from 30 s to 60 min. It is shown that the EL efficiency is directly correlated to the number and areal coverage by the loops. The highest population of loops, ∼5×109 /cm2, and an areal coverage of around 50% were achieved for 1–5 min annealing. This loop distribution results in optimal DELEDs, having the highest EL response and the largest increase of EL intensity with operating temperature (80–300 K). The results of this work confirm a previously introduced model of charge-carrier spatial confinement by a local stress induced by the edge of the dislocation loops, preventing carrier diffusion to non-radiative recombination centres and enhancing radiative transitions at the silicon band edge. PACS 85.60.Jb; 78.60.Fi; 61.72.Tt  相似文献   

14.
影响倒装焊LED芯片电流分布均匀性的因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
钟广明  杜晓晴  唐杰灵  董向坤  雷小华  陈伟民 《物理学报》2012,61(12):127803-127803
为研究影响倒装LED芯片电流密度均匀分布的因素, 建立了芯片的三维有限元电学模型, 采用COMSOL有限元仿真方法, 分析了芯片尺寸、电极结构、电流注入点对倒装LED芯片电流分布均匀性的影响, 并对相关机理进行了探讨. 研究结果表明, 芯片尺寸的增加扩展了电流的横向传输路径与横向电阻, 使LED芯片电流分布的不均匀性呈指数型恶化; 叉指式电极结构可有效缩短电流传输途径, 增加叉指电极数目有利于电流均匀性的提高; 通过在块状电极上合理设计电流注入点可缩短电流传输路径, 显著提高电流的均匀性.  相似文献   

15.
GaN-based blue light emitting diodes(LEDs) have undergone great development in recent years,but the improvement of green LEDs is still in progress.Currently,the external quantum efficiency(EQE) of GaN-based green LEDs is typically30%,which is much lower than that of top-level blue LEDs.The current challenge with regard to GaN-based green LEDs is to grow a high quality In GaN quantum well(QW) with low strain.Many techniques of improving efficiency are discussed,such as inserting Al GaN between the QW and the barrier,employing prestrained layers beneath the QW and growing semipolar QW.The recent progress of GaN-based green LEDs on Si substrate is also reported:high efficiency,high power green LEDs on Si substrate with 45.2% IQE at 35 A/cm2,and the relevant techniques are detailed.  相似文献   

16.
This study demonstrates quantum-dot light-emitting diodes (QD-LEDs) with a function of resistive switching memory, capable of on/off operation at the same driving current depending on reset/set state. The QD-LEDs were fabricated by spin-coating process and experienced two different annealing conditions, which yielded defective or less-defective V2O5–x layer. One of the annealing conditions produced QD-LEDs with the unusual electrical behaviors of negative differential resistance (NDR), capacitance oscillation, and voltage–current hysteresis curves, signifying so-called resistive switching characteristics. X-ray and ultraviolet photoelectron spectroscopies were used to examine the chemical state of the differently annealed V2O5–x layers. The less stoichiometric V2O5–x layer was found to be responsible for the resistive switching behaviors of the NDR and the low and high resistance states (LRS and HRS, respectively). We discuss the LRS/HRS of V2O5–x for resistive switching in terms of a conductive filament effect, induced by microstructural changes caused by oxygen drift and vacancy annihilation processes in the high defect density V2O5–x layer.  相似文献   

17.
18.
19.
李强  李虞锋  张敏妍  丁文  云峰 《中国物理 B》2016,25(11):117102-117102
We have investigated the factors affecting the current spreading length(CSL) in GaN-based light-emitting diodes(LEDs) by deriving theoretical expressions and performing simulations with APSYS.For mesa-structure LEDs,the effects of both indium tin oxide(ITO) and n-GaN are taken into account for the first time,and a new Q factor is introduced to explain the effects of different current flow paths on the CSL.The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer,or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer.The results provide theoretical support for calculating the CSL clearly and directly.For vertical-structure LEDs,the effects of resistivity and thickness of the CSL on the internal quantum efficiency(IQE) have been analyzed.The theoretical expression relating current density and the parameters(resistivity and thickness)of the CSL is obtained,and the results are then verified by simulation.The IQE under different current injection conditions is discussed.The effects of CSL resistivity play a key role at high current injection,and there is an optimal thickness for the largest IQE only at a low current injection.  相似文献   

20.
黄文波  曾文进  王藜  彭俊彪 《物理学报》2008,57(9):5983-5988
采用交流阻抗谱技术,研究了以共轭聚合物(poly[2-methoxy,5-(2′-ethylhexoxy)-1,4-phenylenevinylene])(MEH-PPV)为发光层,以带有胺基的聚芴共聚物poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PF-NR2)为电子传输层的发光二极管的交流响应特性. 对于结构为ITO/P 关键词: 2')" href="#">PF-NR2 聚合物发光二极管 交流阻抗谱 负电容效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号