首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The dressed-state populations and the resonance fluorescence spectrum of a V-type three-level atom driven by a strong coherent field and a weak stochastic one simultaneously are investigated. There can be significant population inversion due to the effect of the stochastic field. The atomic resonance fluorescence spectrum can be controlled by adjusting the frequency difference between the coherent field and the stochastic one and the coherent Rabi frequency. Peak suppression and line narrowing occur under appropriate conditions. Received 23 June 2000 and Received in final form 18 January 2001  相似文献   

2.
A theoretical analysis of the spectral linewidth of V-type inversionless and Raman lasers is presented. First, we examine the effects of the atomic coherence between dressed states and the Autler-Townes splitting on the linewidth. It is demonstrated that near above threshold, the V inversionless laser has a narrower linewidth than that of the two-level laser. Instead of the dressed coherence, it is the Autler-Townes splitting that is responsible for the linewidth reduction though the dressed coherence determines the laser gain. Next, we explore the effects of the generated laser intensity on the linewidth. It is shown that the linewidths of the V inversionless and Raman lasers follow the usual 1/I decrease for smaller laser intensity I, but a slower decrease than 1/I for larger laser intensity. For the V Raman laser, even more surprisingly, with the laser intensity increasing, the linewidth appreciably increases as well. As a result, well above threshold, the V inversionless and Raman lasers may have a larger linewidth than that of the two-level laser. Finally, a comparison is made between the V lasers and the Λ lasers. It is found that the linewidth of the Λ inversionless laser shows a fast 1/I 2 decay under optimum conditions. Received 25 October 1999 and Received in final form 10 March 2000  相似文献   

3.
A new scheme of the influence of quantum interference on the spontaneous emission in a coherently driven three-level medium is presented in this paper. The results are the same with that discussed by [S.-Y. Zhu, L.M. Narducci, M.O. Scully, Phys. Rev. A 52, 4791 (1995)] under resonance conditions, but they are different when the driven field is detuned. Received 8 September 1999 and Received in final form 13 January 2000  相似文献   

4.
On the basis of the nondegenerate quantum-beat laser model, we introduce a coherent field which drives the transition between the upper lasing level and an auxiliary level. We demonstrate that such a four-level system can produce squeezed two-mode laser without and with inversion. When the laser is operated well above threshold, the intensity fluctuation in the average mode is reduced below the shot noise with an optimum Mandel parameter Q=- 1/2. At the same time, the noises in the relative amplitude and the relative phase drop to their vaccum noise levels. Furthermore, regardless of inversion, noninversion, and transition between inversion and noninversion, the optimum Mandel Q parameter of Q=- 1/2 is retained when the system operates well above threshold. A simple physical explanation of the squeezing mechanism for two-mode squeezing is given. Received: 22 December 1997 / Revised: 25 March 1998 / Accepted: 9 September 1998  相似文献   

5.
Instantaneous measurement of field quadrature moments and entanglement   总被引:1,自引:0,他引:1  
We present a method of measuring expectation values of quadrature moments of a multimode field through two-level probe “homodyning”. Our approach is based on an integral transform formalism of measurable probe observables, where analytically derived kernels unravel efficiently the required field information at zero interaction time, minimizing decoherence effects. The proposed scheme is suitable for fields that, while inaccessible to a direct measurement, enjoy one and two-photon Jaynes-Cummings interactions with a two-level probe, like spin, phonon, or cavity fields. Available data from previous experiments are used to confirm our predictions.  相似文献   

6.
We develop quantum models for the combined external and internal motion of atoms in a strongly coupled driven cavity mode including the transverse degrees of freedom. Using a simplified Gaussian mode function we determine the parameter regimes and prospects of 3D cooling and confinement of one or two atoms in the cavity field. Analysing the field dynamics for slow atoms traversing the cavity, we show that the spectrum of the transmitted and spontaneously scattered light contains ample information on the motional dynamics of the atom and can be nicely used to investigate the cooling properties of the system. Including several atoms in the dynamics we show how motional correlations build up by the common interaction with the cavity field. This can be looked upon as collisions at far distance and can be monitored via the transmitted field dynamics. Received 5 March 1999 and Received in final form 4 May 1999  相似文献   

7.
We solve the superradiant laser model in two limiting cases. First the stationary low-pumping regime is considered where a first-order phase transition in the semiclassical solution occurs. This discontinuity is smeared out in the quantum regime. Second, we solve the model in the non-stationary regime where we find a temporally periodic solution. For a certain parameter range well-separated pulses may occur. Received: 19 June 1998 / Accepted: 19 October 1998  相似文献   

8.
In this paper, we investigate several properties of the full signal-idler-pump mode quantum state generated by a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold, with an injected wave on the signal and idler modes in order to lock the phase diffusion process. We determine and discuss the spectral purity of this state, which turns out not to be always equal to 1 even though the three interacting modes have been taken into account at the quantum level. We have seen that the purity is essentially dependent on the weak intensity of the injected light and on an asymmetry of the synchronization. We then derive the expression of its total three-mode Glauber P-function, and calculate the joint signal-idler photon number probability distribution and investigate their dependence on the injection.  相似文献   

9.
We theoretically investigate the features of two-photon absorption in a five-level atomic system with interacting dark resonances. It is found that two-photon absorption can be completely suppressed at two different frequencies due to the application of two coherent coupling fields and the atomic system exhibits double electromagnetically induced transparency windows against two-photon absorption. The position and width of the double two-photon transparency windows can be controlled via properly adjusting the frequency detuning and the intensities of the two coupling fields. In addition, one enhanced narrow central line can be observed in the two-photon absorption spectra, which may find applications in high-precision spectroscopy. Form a physical point of view, we explicitly explain these results in terms of quantum interference induced by three different two-photon excitation channels in the dressed-state picture.  相似文献   

10.
The spontaneous emission of an excited atom is analyzed by quantum stochastic trajectory approach without both rotating-wave approximation and Markovian approximation. The atom finite size effect is also taken into account. We show by an example that the correction due to the counter-rotating wave term is rather small, even for the largest atomic number of real nuclei. Received 10 July 2002 / Received in final form 12 November 2002 Published online 4 February 2003  相似文献   

11.
Using a quantum theory for an ensemble of two- or three-level atoms driven by electromagnetic fields in an optical cavity, we show that the various spins associated with the atomic ensemble can be squeezed. Two kinds of squeezing are obtained: on the one hand self-spin squeezing when the input fields are coherent ones and the atomic ensemble exhibits a large non-linearity; on the other hand squeezing transfer when one of the incoming fields is squeezed. Received 14 August 2001 and Received in final form 7 November 2001  相似文献   

12.
The possibility of lasing without inversion on the 1079.8 nm line of a HeNe laser is investigated. It is shown that a modified double- scheme can be realized by use of the 877.9 nm line for introducing Zeeman coherence. It is shown experimentally that Zeeman coherence can enforce laser action, even if the inversion is below threshold. A different choice of the polarization of the driving beam can result in suppression of laser action above threshold. The underlying mechanisms are examined. On the 611.8 nm line, laser action below threshold inversion is obtained with the driving beam tuned to 824.9 nm (up-conversion).  相似文献   

13.
We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping.  相似文献   

14.
We study the exchange of states in coupled fields along their time evolution. The coupling is described by a quadratic form in terms of annihilation and creation operator in the field Hamiltonian. An analytical approach is employed to describe the time evolution of the field state in Fock's space and the conditions for an arbitrary initial states to be transferred with 100% fidelity is determined. We show that only for initial states C0|0>+CN|N>, this situation can occurs. The important |1〉↔|0〉 qubits transfer is a particular case of this transference of number state. The relation between the coupling constant and characteristic field frequencies for complete state transference is also determined.  相似文献   

15.
The combined effects of the pump noise suppression and injection locking technique on the intensity noise of a diode pumped Nd:YVO4 microchip laser are theoretically and experimentally investigated. Complete cancellation of the relaxation oscillation peak is experimentally achieved. Very good agreement between experimental results and theoretical predictions of a fully quantum model describing lasers with injected signal is found. Received 10 December 2001 and Received in final form 6 March 2002  相似文献   

16.
We investigate the ultrafast control of coherent population transfer in a Λ-type three-level system with a train of pump-Stokes femtosecond pulse pairs, where the pulse sequences can be produced either by optical delay line or by pulse shaping with sinusoidal phase modulation. It is shown that when the pump and Stokes pulses in each pair are applied in the counterintuitive order, similar to that in the stimulated Raman adiabatic passage technique, due to temporal quantum interference (besides optical interference in the case of overlapped subpulses), ultrafast control of coherent population transfer can be achieved by scanning the inter-pair time delay or by changing the sinusoidal phase modulation parameters. This method has potential applications in ultrafast control of chemical reactions and quantum information processing.  相似文献   

17.
We reveal that for a realistic system, interference effects are obtained such as the suppression of central line and inner sidebands and the narrowing of the outer fluorescence sidebands. For this purpose, we consider a spontaneous decay from an excited state to a metastable state when the excited and metastable states are resonantly coupled to an auxiliary metastable state by a laser field and a microwave field, respectively. The fluorescence spectrum evolves from a five-peaked structure into a doublet of ultrasharp lines as the ratio of the laser field Rabi frequency to the microwave Rabi frequency is decreased. The physical origin is presented in terms of dressed states.  相似文献   

18.
We report on a theoretical and experimental investigation of 39K magneto-optical trapping. The small hyperfine splitting characterizing the upper level of the cooling transition affects the cooling mechanism. In order to model the atom-laser interaction, the whole level structure of the D2 line has to be taken into account. Two different regimes have been recognized, one optimizing the loading of the trap, the second minimizing the temperature of the atoms. We investigated these two regimes experimentally and found results in agreement with the theoretical predictions. Received: 6 March 1998 / Received in final form: 13 May 1998 / Accepted: 13 May 1998  相似文献   

19.
We introduce the ‘decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PBG) reservoir successfully. By utilizing the master equations, the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained. The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account. It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line. The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.  相似文献   

20.
Inserting left-handed material (LHM) layers into a one dimensional structure can influence the spontaneous emission (SpE) of a two-level atom. This has been investigated, starting from the simplest case of a three-layer system, where we find the reflected field (atom can “see”) passing through LHM layer is stronger than that through the corresponding normal layer. Indeed the induced decay is more strongly influenced by reflected field passing through LHM layer. Based on this and after further analysis of reflectivity, we find that, a quarter photonic crystal (PC) composed of alternately LHM and RHM can inhibit the atomic spontaneous emission more intensely compared to an ordinary PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号