首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eighteen unnatural β-amino acids, including several β-3-homo-amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V and V2), and ristocetin A (Chirobiotic R) as chiral selectors. The effects of the organic modifier, mobile phase composition and pH on the separations were investigated. A comparison of the separation performances of the macrocyclic glycopeptide stationary phases revealed that the Chirobiotic T2 column exhibited better selectivity than the Chirobiotic T column for the separation of β-3-homo-amino acid enantiomers; vancomycin or ristocetin A exhibited lower selectivity. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers, with the exception of the Chirobiotic R column, where the elution sequence R < S was observed.  相似文献   

2.
The direct separation of the enantiomers of four 2-aminomono- or dihydroxycyclopentanecarboxylic acids and four 2-aminodihydroxycyclohexanecarboxylic acids was performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG) or ristocetin A (Chirobiotic R) as chiral selectors. The effects of the nature of organic modifiers, the pH, the mobile phase composition and the structures of the analytes on the separation were investigated. Chirobiotic TAG, and in some cases Chirobiotic T, proved to be the most useful of these columns. The elution sequence was determined in most cases.  相似文献   

3.
Direct and indirect reversed-phase (RP) high-performance liquid chromatographic methods were developed for the separation of enantiomers of 18 unnatural beta-amino acids, including several beta-3-homo amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases (CSPs) containing macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column) and teicoplanin aglycone (Chirobiotic TAG column). The indirect method involved pre-column derivatization with a new chiral derivatizing agent (CDA), (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester ((S)-NIFE), and subsequent separation of diastereomers on Discovery C18 and Hyperpep 300 C18 columns. The different methods were compared in systematic chromatographic examinations. The effects of organic modifier, mobile phase composition, pH and flow rate on the separation were investigated.  相似文献   

4.
A set of 42 chiral compounds containing stereogenic sulfur was prepared. There were 31 chiral sulfoxide compounds, three tosylated sulfilimines and eight sulfinate esters. The separations were done using five different macrocyclic glycopeptide chiral stationary phases (CSPs), namely ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and vancomycin aglycone (VAG) and seven eluents, three normal-phase mobile phases, two reversed phases and two polar organic mobile phases. Altogether the macrocyclic glycopeptide CSPs were able to separate the whole set of the 34 sulfoxide enantiomers and tosylated derivatives. Five of the eight sulfinate esters were also separated. The teicoplanin and TAG CSPs were the most effective CSPs able to resolve 35 and 33 of the 42 compounds. The three other CSPs each were able to resolve more than 27 compounds. The normal-phase mode was the most effective followed by the reversed-phase mode with methanol-water mobile phases. Few of these compounds could be separated in the polar organic mode with 100% methanol mobile phases. Acetonitrile was also not a good solvent for the resolution of enantiomers of sulfur-containing compounds, neither in the reversed-phase nor in the polar organic mode. The structure of the chiral molecules was compared to the enantioselectivity factors obtained with the teicoplanin and TAG CSP. It is shown that the polarity, volume and shape of the sulfoxide substituents influence the solute enantioselectivity factor. Changing the oxidation state of the sulfur atom from sulfoxides to sulfinate esters is detrimental to the compound's enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG CSPs was very consistent: the (S)-(+)-sulfoxide enantiomer was always the less retained enantiomer. In contrast, the (R)-(-)-enantiomer was less retained by the ristocetin A, vancomycin and vancomycin aglycone columns, showing the complementarity of these CSPs. The macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of chiral sulfoxides.  相似文献   

5.
The enantiomers of eight unusual beta(2)- and beta(3)-homoamino acids were separated on chiral stationary phases containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T or T2) or teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of the organic modifier, the mobile phase composition, and temperature on the separations were investigated. Linear van't Hoff plots were observed in the studied temperature range, 280-318 K, and the changes in enthalpy, Delta(DeltaH(o)), entropy, Delta(DeltaS(o)), and free energy, Delta(DeltaG(o)) were calculated. The values of the thermodynamic parameters depended on the nature of the selectors, the structures of the analytes, and especially the positions of the substituents on the analytes. A comparison of the separation performances of the macrocyclic glycopeptide stationary phases revealed that the Chirobiotic TAG column exhibited much better selectivity for beta(2)-homoamino acids, while the separation of beta(3)-homoamino acid enantiomers was better on Chirobiotic T or T2. The elution sequence was determined in some cases and was observed to be R < S.  相似文献   

6.
Svensson LA  Owens PK 《The Analyst》2000,125(6):1037-1039
Racemic mixtures of five acidic drugs have been successfully separated by supercritical fluid chromatography (SFC) using macrocyclic antibiotic chiral stationary phases (CSPs). A ristocetin A CSP has been prepared 'in-house' and effectively applied in packed capillary SFC to separate the enantiomers of dichlorprop (R(s) = 1.4), ketoprofen (R(s) = 0.9) and warfarin (R(s) = 0.9). The commercial ristocetin A CSP (Chirobiotic R) was subsequently studied in packed column SFC with similar results where the enantiomers of warfarin (R(s) = 2.2), coumachlor (R(s) = 2.5) and thalidomide (R(s) = 0.6) were separated. Interestingly, differences were observed between the two differently immobilised CSPs where the enantiomers of dichlorprop and ketoprofen, which were separated on the 'in-house' CSP, could not be separated on the commercial phase.  相似文献   

7.
Ion-exclusion chromatography is a well established technique for the analysis of achiral ionic species, but it has rarely been applied to chiral analytes. In this paper enantioselective ion-exclusion separations were developed on two commercially available HPLC phases: Chirobiotic TAG, based on teicoplanin aglycone, and Opticrown RCA (+), based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Chirobiotic TAG columns have a carboxylic acid group on the chiral ligand, which can be partially ionized to exclude anionic analytes by ionic repulsion. Under acidic conditions Opticrown columns have a cationic sublayer generated from the aminopropyl base silica that excludes cationic analytes. Both columns demonstrate a large dependence of efficiency on flow-rate, with the highest efficiencies at 0.1 ml/min on a 4.6 mm inner diameter column.  相似文献   

8.
The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10–40 °C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases.  相似文献   

9.
Two macrocyclic antibiotic type chiral stationary phases (CSPs), based on native teicoplanin and teicoplanin aglycone, Chirobiotic T and Chirobiotic TAG, respectively, were evaluated for the high-performance liquid chromatographic separation of enantiomers of 15 unnatural conformationally constrained alpha-amino acids, Phe and Tyr analogs, and 12 beta-amino acids having cycloalkane or cycloalkene skeletons. The chromatographic results are given as the retention, separation and resolution factors along with the enantioselective free energy difference corresponding to the separation of the enantiomers. It is clearly established that in most cases the aglycone is responsible for the enantioseparation of amino acids. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was between 0.02 and 0.30 kcal mol(-1) for these particular amino acids. The resolution factors are higher with the aglycone CSP. Although the sugar units generally decrease the resolution of amino acid enantiomers, they can contribute significantly to the resolution of some unusual amino acid analogs. By application of these two CSPs excellent resolutions were achieved for most of the investigated compounds by using reversed phase or polar organic mobile mode systems. The separation conditions were optimized by variation of the mobile phase composition.  相似文献   

10.
Enantiomer separations by HPLC using the macrocyclic glycopeptides teicoplanin (Chirobiotic T), teicoplanin aglycon (Chirobiotic TAG), and ristocetin A (Chirobiotic R) chiral stationary phases (CSP) have been achieved on a unique series of potentially biologically active racemic analogues of dihydrofurocoumarin. The macrocyclic glycopeptides have proven to be very selective for this class of compound. All of the 28 chiral analogues examined afforded baseline separation on at least one of the macrocyclic glycopeptide CSP. The teicoplanin CSP showed the broadest enantioselectivity with 24 of the compounds baseline separated. The TAG and the R CSP produced 23 and 14 baseline separations respectively. All three mobile phase modes, i.e. normal phase (NP), reversed phase (RP), and new polar organic modes (PO), have been evaluated. The NP mode proved to be most effective for the separation of chiral dihydrofurocoumarins on all CSP tested. In the reversed phase (RP) mode, all three CSP separated a similar number of compounds. It was observed that the structural characteristics of the analytes and steric effects are very important factors leading to chiral recognition. Hydrogen bonding was found to play a secondary role in chiral discrimination in the normal phase and polar organic modes. Hydrophobic interactions are important for chiral separation in the reversed-phase mode. Chromatographic retention data does not provide information on the absolute configuration of these chiral dihydrofurocoumarin derivatives. However, when coupled with circular dichroism using the exciton coupling chirality method, the enantiomer elution order and the absolute configuration of some chiral dihydrofurocoumarins were successfully determined.  相似文献   

11.
Two macrocyclic glycopeptide antibiotic-type chiral stationary phases (CSPs) based on native teicoplanin and teicoplanin aglycone, Chirobiotic T and TAG, respectively, were evaluated with regard to the high-performance liquid chromatographic separation of the enantiomers of 10 secondary alpha-amino acids (imino acids). The chromatographic results are given as the retention, separation and resolution factors, together with the enantioselective free energy difference corresponding to the separation of the enantiomers. By application of these two CSPs, excellent resolutions were achieved for the investigated compounds by using reversed-phase mobile mode systems. The separation conditions were optimized by variation of the mobile phase composition. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP for these particular amino acids ranged between 0.70 and -1.83 kJ mol(-1). It was established that better enantioseparations of the secondary alpha-amino acids were attained in most cases on the aglycone CSP.  相似文献   

12.
Direct and indirect reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of seventeen unnatural β-amino acids, including several β-3-homo amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases containing macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column) and teicoplanin aglycone (Chirobiotic TAG column). The indirect method involved pre-column derivatization with two new chiral derivatizing agents, (1S,2S)-1,3-diacetoxy-1-(4-nitrophenyl)-2-propylisothiocyanate, (S,S)-DANI and (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester, (S)-NIFE. The different methods were compared in systematic chromatographic examinations. The effects of organic modifier, mobile phase composition, pH and flow rate on the separation were investigated.  相似文献   

13.
Summary Reversed-phase high-performance liquid chromatographic methods were developed for the separation of the enantiomers of five glycine and twelve alanine analogues. The enantioselective separation involved two methods. The direct separations were performed on chiral stationary phases containing a macrocyclic glycopeptide antibiotic: teicoplanin (Chirobiotic T column), ristocetin A (Chirobiotic R column) or chiral crown ether (Crownpak CR(+) column). The indirect methods involved pre-column derivatization with the chiral derivatizing agents 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate andN-α-(2,4-dinitro-5-fluorophenyl)-L-alaninamide (Marfey's reagent). The different methods were compared in systematic chromatographic examinations. The effects of organic modifier content, mobile phase composition, pH and flow rate on the separation were investigated. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

14.
LC-electrospray ionization (ESI) MS conditions were optimized for the individual chiral separation of 19 compounds of pharmaceutical interest using the macrocyclic glycopeptide-based chiral stationary phases in both polar organic and reversed-phase modes (RPM). The influence of mobile phase composition and MS additive type on sensitivity was investigated for all classes of compounds tested. Compounds with amine or amide groups were efficiently separated, ionized, and detected with the addition of 0.1% (w/w) ammonium trifluoroacetate to the solvent system in either the reversed-phase or polar organic mode (POM). Macrocyclic glycopeptide coupled column technology was initially used to screen all chiral compounds analyzed. Baseline resolution of enantiomers was then achieved with relatively short retention times and high efficiencies on Chirobiotic T, Chirobiotic V or Chirobiotic R narrow bore chiral stationary phases. The polar organic mode offered better limits of detection (as low as 100 pg/ml) and sensitivity over reversed-phase methods. An optimum flow-rate range of 200-400 microl/min was necessary for sensitive chiral LC-ESI-MS analysis.  相似文献   

15.
Berkecz  R.  Ilisz  I.  Forr&#;  E.  F&#;l&#;p  F.  Armstrong  D. W.  P&#;ter  A. 《Chromatographia》2006,63(13):S29-S35
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of β-lactams. The enantiomers of 7 aryl-substituted β-lactams were separated on chiral stationary phases containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T) and teicoplanin aglycone (Chirobiotic TAG) at 10-°C increments in the range 5–45 °C, using different compositions of 0.1% aqueous triethylammonium acetate (pH 4.1)/methanol (v/v) as mobile phase. The mobile phase composition and temperature were varied to achieve baseline resolutions in a single chromatographic run. The dependence of the natural logarithms of the selectivity factors ln α on the inverse of temperature, 1/T, was used to determine the thermodynamic data on the enantiomers. The thermodynamic data revealed that all the compounds in this study undergo separation via the same enthalpy-driven chiral recognition mechanism. The different methods were compared in systematic chromatographic examinations. The effects of the organic modifier, the mobile phase composition and the temperature on the separation were investigated.  相似文献   

16.
HPLC enantiomeric separations of a wide variety of racemic analytes was evaluated using chiral stationary phases (CSPs) based on the macrocyclic glycopeptides teicoplanin (T), teicoplanin aglycone (TAG), and methylated teicoplanin aglycone (Me-TAG) in two different mobile phase modes, i.e., the RP mode and the polar organic (PO) mode. Comparison of the enantiomeric separations using Chirobiotic T, Chirobiotic TAG, and the methylated form of TAG were conducted in order to gain a better understanding of the roles of the polar functional groups on the CSP. Substantial effects due to the cleavage of saccharides and/or methylation on chiral separations were observed in both separation modes. Improved separation efficiencies for many acidic analytes were obtained by methylating the H-bonding groups of TAG. These groups were believed to be a contributing factor to band broadening on TAG due to their negative effect on mass transfer between the stationary phase and mobile phase. Ionic/dipolar interactions between the carboxylate group of the analytes and the amine groups on T, TAG, or Me-TAG are important for chiral discrimination. Therefore, analytes possessing a carboxyl group are good candidates for successful separations on these CSPs. Hydrophobic interactions are important for enantiomeric separations in the RP mode where the H-bonding interactions between analytes and the chiral selectors are relatively weak. Me-TAG offers higher hydrophobicity, which can accentuate the interactions of analytes with hydrophobic moieties, but these interactions are not necessarily stereoselective. In the PO mobile phase, electrostatic/dipolar interactions between polar functional groups are the dominating interactions in chiral recognition. Another important factor is steric fit, which could be changed with every modification of the T structure. Therefore, substantial changes of enantioseparations were obtained within this studied group of CSPs. The PO mode was shown to be the most powerful mobile phase mode for enantiomeric separations on T-based stationary phases, mainly due to the improved efficiency. Methylation of the TAG proved to be a very useful tool for investigating the chiral recognition mechanism for this group of chiral selectors.  相似文献   

17.
Berkecz  R.  T&#;r&#;k  R.  Ilisz  I.  Forr&#;  E.  F&#;l&#;p  F.  Armstrong  D. W.  P&#;ter  A. 《Chromatographia》2006,63(13):S37-S43

Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of the enantiomers of tricyclic β-lactams, cis-3,4-benzo-6-azabicyclo[3.2.0]heptan-7-one, cis-4,5-benzo-7-azabicyclo[4.2.0]-octan-8-one, cis-5,6-benzo-8-azabicyclo[5.2.0]nonan-9-one and new bicyclic β-amino acids, the six- and seven-membered homologues of cis-1-amino-4,5-benzocyclopentane-2-carboxylic acid (benzocispentacin), cis-1-amino-5,6-benzocyclohexane-2-carboxylic acid and cis-1-amino-6,7-benzocycloheptane-2-carboxylic acid. The direct separations of the analytes were performed on chiral stationary phase (CSP) columns containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V), vancomycin aglycone (Chirobiotic VAG), ristocetin A (Chirobiotic R) or a new dimethylphenyl carbamate-derivatized β-cyclodextrin-based Cyclobond DMP. The results achieved with the different methods were compared in systematic chromatographic examinations. The effects of an organic modifier and of the mobile phase composition on the separation and the separation efficiency of different columns were investigated. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP for these β-lactams and β-amino acids ranged between 0.3 and −1.1 kJmol−1. Better enantioseparations were attained in most cases on the aglycone CSP.

  相似文献   

18.
张晶  陈晓东  李丽群  贺建峰  范军  章伟光 《色谱》2016,34(3):321-326
超临界流体色谱(SFC)分离具有速度快、分离效率高、溶剂消耗少等优点,近年来在手性化合物的分离分析中得到诸多应用。本文对比研究了涂覆型多糖手性色谱柱在SFC和高效液相色谱(HPLC)上拆分24种手性化合物的差异。通过比较这些化合物在色谱柱上的保留时间和选择因子等发现多数化合物在SFC上的分离效率要高于其在HPLC上的分离效率,但HPLC对轴手性化合物的分离效率要优于SFC。SFC和HPLC的分离表现出一定的互补性,随着苯环侧链烷基的碳数增加,化合物在SFC上的保留逐渐增强,而在HPLC的保留却逐渐减弱。叶菌唑在使用SFC和HPLC分析时出现了洗脱顺序反转的现象。这些结果为SFC手性拆分提供了参考。  相似文献   

19.
Conditions for separation of enantiomers of underivatized amino acids phenyl glycine and tryptophan and of mandelic acid as test compounds were studied on a Chirobiotic T column packed with amphoteric glycopeptide Teicoplanin covalently bonded to the surface of silica gel. The effects of the mobile phase composition on the retention and selectivity under analytical conditions, on the profile of the adsorption isotherms of the enantiomers and on the overloaded separation were investigated. The concentration of ethanol or of methanol in aqueous-organic mobile phases and the pH of the mobile phase affect not only the retention and selectivity, the saturation capacity and the isotherm profile, but also the solubility of the acids, which should be taken into account in development of preparative separations. A compromise between the separation selectivity and the solubility should be made in selecting the mobile phase suitable to accomplish preparative separations at acceptable production rate and throughput of the operation.  相似文献   

20.
Summary The difect and indirect separation of enantiomers of secondary amino acids was studied by high-performance liquid chromatography. Direct separation was by using a macrocyclic glycopeptide, teicoplanin or ristocetin A, as chiral stationary phase. Indirect separation was via pre-column derivatization with (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester [(S)-NIFE] as a new chiral derivatizing agent. Both direct and indirect separations were performed by means of reversed-phase HPLC. Conditions for separations were optimized. The methods described offer good enantioselectivity for synthetic chiral imino acids. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号