首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A comparison of the performance of pulsed infrared HF lasers pumped by phototriggered discharges using either Ne/SF6/H2 or Ne/SF6/C2H6 mixtures are presented. For an active volume of 50 cm3, a specific output energy as high as 11 J/ has been achieved with an efficiency higher than 3% when C2H6 is used as H atom fuel. The replacement of ethane by molecular hydrogen reduces the laser performance by 40%. The investigation of the temporal evolution of the laser intensity shows that this dramatic decrease results from a shortening of the laser pulse duration rather than from a decrease of the peak power. Indications are given that this behavior is correlated to a very different temporal evolution of the discharge parameters, especially at low reduced electric field E/N.  相似文献   

2.
3 , has been performed in Ne/SF6/H2 and Ne/SF6/C2H6 mixtures. Parameters involved have been the storage line capacitance and the circuit inductance, the capacitors charging voltage, the RH-molecule type and partial pressure, and the X-ray dose for the preionization. High laser performance has been achieved with C2H6: an output energy up to 3 J corresponding to a specific energy of 9.6 J/l at an efficiency of 4.7%, which strengthens the advantage of the photo-triggering technique to energize high-power HF lasers. However the optimum performance achieved with H2, 5.75 J/l and 3.5%, are lower. It is shown, through a time-resolved study of the electrical discharge and spatial dynamics correlated to laser power and energy measurements, that discharge instabilities are responsible for the poor laser performance of the mixture with H2. These instabilities, which lead to arc development, are characteristics of the discharge in Ne/SF6. It is demonstrated for the first time that addition of a heavy hydrocarbon, such as C2H6, to that mixture induces the discharge stabilization so that the laser emission arises in a homogeneous active medium. This effect allows us to achieve better laser performance than with H2. Received: 17 March 1998/Revised version: 13 July 1998  相似文献   

3.
The plasma electrode design concept is applied for the first time to an HF laser. The discharge along the surface of a dielectric (sliding discharge) is used as a plasma cathode for the main laser discharge. The laser operates at atmospheric pressure with a gas mixture of He/SF6/C3H8. Details are presented on the efficiency of energy transfer, the dependence of laser performance on circuit parameters, gas mixture, relative energy loading and time delay between the plasma electrode and main discharges. The F atom production rate is estimated from the linear dependence of the output energy on the electric charge passed through the discharge. Output energies of 600 mJ were obtained at 1.6% efficiency from a small active discharge of 108 cm3 volume and 38 cm length, while the maximum specific input and output energies were 370 J/1 and 5.7 J/1, respectively. These values compare favourably with those reported in the literature for non-chain-reaction-type gas mixtures at 1 atm pressure and demonstrate that the plasma electrode design is a powerful scheme for developing gas-discharge lasers.  相似文献   

4.
Enrichment of 34SF6 following irradiation of SF6?H2 mixtures by the focused output of a pulsed TEA CO2 laser has been studied as a function of the number of laser pulses, excitation wavelength, total pressure, and laser energy.  相似文献   

5.
Multiple photon excitation, saturation, and linear absorption of SF6-argon mixtures when irradiated by a high power CO2 TEA laser is investigated using a pulsed optoacoustic technique. At low intensities the expected linear dependence of the absorption on laser intensity is observed. At intermediate intensities the absorption exhibits a square root dependence on the incident laser intensity, a dependence which is typical for saturation of an inhomogeneously broadened absorption. At even higher intensities, the absorption shows an intensity dependence typical of multiple photon excitation. The laser intensity was varied between 0.016 kW/cm2 and 5 MW/cm2, values lower than that needed to produce multiple photon dissociation of SF6. Increasing the collision frequency of the absorbing molecules with an inert buffer gas is observed to quench the multiple photon excitation.  相似文献   

6.
An Ne-H2 laser employing the 2s-2p transition in Ne is examined at current densities up to 300 ma/cm2. The H2 removes metastable Ne atoms and reduces the rate of excitation of the 2p level, so the discharge currents may be raised considerably. The gain at 11 143 Å is measured as a function of discharge current for near-optimal conditions.  相似文献   

7.
The unsaturated losses , and the saturation intensityI s, were measured in an uv-preionized KrCl laser for optimized He and Ne based laser gas mixtures. The measurements were made as a function of the specific power loading and of the total pressure of the laser mixtures. Higher values for andI s were found for the Ne-based laser mixture than for the He-based mixture. At 45 kV charging voltage and at 355 kPa of total pressure we measured =0.053 cm–1 andI s =9.4MW/cm2 for the Ne based mixture, and =0.035 cm–1 andI s =5.1MW/cm2 for the He based mixture.  相似文献   

8.
Pressure induced absorption has been investigated in mixtures of H2 with CF4, SF6, N2, CO2 and N2O respectively, in the frequency region 8000–9500 cm?1 of the first overtone of H2. In mixtures of H2 with CF4 or with SF6 simultaneous vibrational transitions are observed. The absolute intensities of the induced 0→2 vibrational transition of H2 in the different mixtures and of the simultaneous transitions have been evaluated. Formulas are derived for the absolute intensity of those induced transitions. The induction of the simultaneous transitions is mainly due to the electrostatic interaction in the collision pairs. The contributions of the electrostatic forces and of the overlap forces are of the same order of magnitude in the case of the induced 0→2 vibrational transition of H2.  相似文献   

9.
The absorption of CO2 laser pulses by low pressure SF6 gas has been investigated over a wide range of energy fluxes. For laser energy fluxes of 0.01–1 J cm-2 the effective absorption cross section varies between 0.2 and 2 × 10-18 cm2. For each laser line an individual dependence on the energy is found and in some cases minor changes in the absorption behaviour seem to occur around 0.1 J cm-2. SF6 excited with an average vibrational energy content of up to 20 photons/molecule does not absorb measurable amounts of 9.4 μm laser light. The influence of various SF6 and Ar pressures on the temporal shape of the transmitted pulses has been investigated.  相似文献   

10.
A fast discharge KrF laser system (λ = 248.5 nm) has been operated at 25 mJ/pulse, 3.0 MW peak power in high pressure He: Kr: fluoride mixtures containing low concentrations of both krypton and the fluorine donors N2F4, NF3 and SF6. Lasing action is reported for the first time in N2F4 and SF6 with optimum energy output at 750 and 160 mJ/l respectively.  相似文献   

11.
The burning voltages of an intermediate pressure self-sustained volume discharge (SSVD) in SF6 and SF6-C2H6 mixtures irradiated by a 10.6 μm pulse TEA CO2 laser, have been measured on varying the laser fluences over a wide range. The delay between the voltage application and the laser pulse onset is 4 μs, and the laser pulse lasts ∼3 μs. The considerable rise observed in the discharge voltages with increasing absorbed specific laser radiation energy, is due to electron attachment to vibrationally excited molecules of SF6. Different processes of relaxation of the vibrational energy stored in SF6 molecules are analyzed and the relevant characteristic times are numerically assessed. The gas heating process owing to vibration-translation energy exchange is qualitatively described in terms of the “thermal explosion”. The relation between the “explosion” and delay times determines the peculiarities of electron attachment to vibrationally excited SF6 molecules. The burning voltages of a submicrosecond non-irradiated SSVD in the above-mentioned media versus the specific electric energy deposited are also measured. They are compared to those of a laser-illuminated SSVD at commensurable specific laser energy depositions. It is concluded that electron attachment to the discharge-produced vibrationally excited SF6 molecules is not capable of noticeably affecting the discharge voltages of a submicrosecond non-irradiated SSVD. PACS 42.55 Ks; 52.80  相似文献   

12.
We have used a CO2 laser to ignite mixtures of SF6 :H2 and S2F10 :H2. We observed HF lasing from these mixtures when an optical resonator was constructed around the reaction cell. The HF-lasing performance of the two mixtures was compared as a function of mixture ratio, fluorine-donor pressure, and CO2-laser frequency. Under comparable conditions, the HF-laser output for S2F10 :H2 mixtures was typically 5–6 times greater than that for SF6 :H2 mixtures. Spectral output of the HF laser was coarsely resolved to provide data about the vibrational and rotational states of the HF molecule.  相似文献   

13.
Electric parameters of a barrier discharge cell with flat tips are studied experimentally and numerically for Xe/NF3 (50 : 1) and Xe/SF6 (50 : 1) gas mixtures. The discharge process is simulated using a three-parameter model. The dependences of the computational model parameters on the pressure of the Xe/SF6 (50 : 1) gas mixture and on the electrode spacing are presented. Comparison of experimental and theoretical results shows that the error of simulation of the main discharge parameters (current, voltage drop, and transferred charge) does not exceed 10%.  相似文献   

14.
The linear absorption of CO2 laser radiation in SF6, WF6, and UF6 has been measured by using optoacoustic detection techniques. Absolute absorption coefficients per Torr as low as 1 × 10?7 cm?1 Torr?1 in a 2-cm active path length could be measured by taking advantage of calibration measurements performed with SF6.  相似文献   

15.
Low pressure SF6 with its isotopes in natural abundance was irradiated by a pulsed CO2 laser operated on theP20 line (10.6 μm band). Dissociation yields of32SF6 and34SF6 were measured separately. If the radiation is focussed into the cell, the dissociation yield is proportional to the 3/2 power of the laser energy, as was derived under general conditions and confirmed experimentally. The reaction probabilityP(Φ), the fraction of molecules dissociated by an energy flux Φ, was measured using parallel light. For both isotopes,P(Φ) saturates at high energy flux close toP=1. At a lower flux (2 J cm−2), the dissociation probability of32SF6 displays a threshold, whereas the dissociation probability of34SF6 is a very steep function of Φ over the whole range of fluxes.P(Φ) at the higher energy flux was measured in a cavity absorption cell, in which up to 80% of the molecules were dissociated by a single pulse. Below 0.2 mbar SF6 the dissociation yields for both isotopes are pressure independent. Above 2 mbar the isotopic selectivity is completely lost. Addition of hydrogen always decreases the dissociation yields.  相似文献   

16.
The ν1 (CO stretching) and ν2 (CF stretching) bands of the FCO radical were observed with Doppler-limited resolution by an infrared diode laser spectrometer with Zeeman and source modulation. The FCO radical was generated by a 60-Hz discharge in one of the following three gas mixtures: O2 + C2F4, CO + SF6, and CO + C2F4, all diluted with He. The observed spectra were analyzed to determine the rotational constants, the centrifugal distortion constants, and the spin-rotation interaction constants. The band origins, 1861.6372(1) and 1026.1283(1) cm?1 [with standard errors in parentheses], which were obtained, were found to agree well with matrix data, 1857 and 1023 cm?1, respectively. The assignment of the observed spectra to the FCO radical was further supported by observing the ν1 band of F13CO, which was obtained from 13CO and SF6. The molecular structure and the force field of FCO are briefly discussed by using molecular constants obtained from the observed spectra.  相似文献   

17.
Measurements in SF6?H2 mixtures of HF1 fluorescence at 2.8 μm induced by pulsed CO2 laser radiation are reported. The dependence of fluorescence intensity on laser fluence is found to be strongly affected by the laser beam geometry in the interaction region. Our results show that the technique of HF1 fluorescence intensity detection can be a sensitive and reliable single-shot measure of multiple-photon dissociation of SF6 in a collisionless regime on condition that the laser fluence is uniform along the interaction region which is monitored.  相似文献   

18.
The advantages of inductive energy storage (IES) generators for increasing the pulse energy, power, and duration for nitrogen laser pumped by self-sustained transverse discharge have been experimentally demonstrated. A theoretical model is developed and the operation of IES-pumped laser on nitrogen-electronegative gas mixtures is numerically simulated. It is shown experimentally and theoretically that, adding electronegative gases, one can control the pulse shape of lasing on the C3II u -B3II g transition in nitrogen. The increase in the electric field strength in the laser gap in N2-NF3 and N2-SF6 mixtures produced 337.1-nm laser pulses consisting of two spaced peaks and 40–50-ns pulses close to rectangular. The increase in the laser active volume to 6 l (discharge cross section to 6×10 cm2) in N2–SF6 mixtures made it possible to obtain the maximum output energy (Q=110 mJ) and UV power (P las =6 MW). In N2-NF3 mixtures, the laser pulse duration was up to ∼100 ns with an energy up to Q=30 mJ.  相似文献   

19.
电激励脉冲HF激光SF_6/C_2H_6工作气体的放电特性   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了电激励脉冲HF激光工作介质SF6/C2H6混合气体的放电特性。通过对放电等离子体荧光图像和放电波形的测量,分析比较了不同条件下放电稳定性、剩余电压、能量沉积效率等特性参数的变化情况。实验结果表明:混合气体的放电过程存在主放电、剩余电压维持和电弧放电3个阶段,各阶段的放电特性有所差异;提高充电电压有利于放电能量的有效沉积,也会使不稳定的电弧放电提前;增加C2H6原子分数能起到抑制电弧放电的作用;混合气体总压的增加会导致剩余电压的提高以及辉光放电的能量沉积效率的降低;最佳的能量沉积出现在电弧放电阶段与辉光放电阶段即将融合的临界状态。  相似文献   

20.
The results of a comprehensive study of a compact UV-preionized XeCl laser are presented. The subjects of this study were: discharge voltage and current measurements, dye laser probing of the active medium, and the mass spectrometry of gas mixture degradation products. It is shown that the gas lifetime was significantly improved when the laser was operated with BCl3 as a halogen donor instead of commonly used HCl. By the dye laser absorption and gain probing, the temporal and spatial dependences of the densities for several plasma components, Ne*, Xe*, Xe+*, Cl, XeCl* and of ground state boron atoms were measured. Some aspects of plasma kinetics for uniform and constricted phases of the discharge are discussed. By the mass spectrometry of gas mixture degradation products on long-term operation of the laser device several gaseous (N2, O2, CO2, H2O, C2H4) and solid (NiCl2, H3BO3) products were detected in the laser chamber. NH4Cl was determined to be a stable fraction of the deposits on optics surfaces. The reasons for the improvement of gas lifetime for BCl3-containing gas mixtures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号