首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A set S of vertices in a graph G is a dominating set of G if every vertex of V(G)?S is adjacent to some vertex in S. The minimum cardinality of a dominating set of G is the domination number of G, denoted as γ(G). Let Pn and Cn denote a path and a cycle, respectively, on n vertices. Let k1(F) and k2(F) denote the number of components of a graph F that are isomorphic to a graph in the family {P3,P4,P5,C5} and {P1,P2}, respectively. Let L be the set of vertices of G of degree more than 2, and let GL be the graph obtained from G by deleting the vertices in L and all edges incident with L. McCuaig and Shepherd [W. McCuaig, B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989) 749-762] showed that if G is a connected graph of order n≥8 with δ(G)≥2, then γ(G)≤2n/5, while Reed [B.A. Reed, Paths, stars and the number three, Combin. Probab. Comput. 5 (1996) 277-295] showed that if G is a graph of order n with δ(G)≥3, then γ(G)≤3n/8. As an application of Reed’s result, we show that if G is a graph of order n≥14 with δ(G)≥2, then .  相似文献   

2.
Let jk≥0 be integers. An ?-L(j,k)-labelling of a graph G=(V,E) is a mapping ?:V→{0,1,2,…,?} such that |?(u)−?(v)|≥j if u,v are adjacent and |?(u)−?(v)|≥k if they are distance two apart. Let λj,k(G) be the smallest integer ? such that G admits an ?-L(j,k)-labelling. Define to be the smallest ? if G admits an ?-L(j,k)-labelling with ?(V)={0,1,2,…,?} and otherwise. An ?-cyclic L(j,k)-labelling is a mapping ?:VZ? such that |?(u)−?(v)|?j if u,v are adjacent and |?(u)−?(v)|?k if they are distance two apart, where |x|?=min{x,?x} for x between 0 and ?. Let σj,k(G) be the smallest ?−1 of such a labelling, and define similarly to . We determine λ2,0, , σ2,0 and for all Hamming graphs Kq1Kq2?Kqd (d≥2, q1q2≥?≥qd≥2) and give optimal labellings, with the only exception being for q≥4. We also prove the following “sandwich theorem”: If q1 is sufficiently large then for any graph G between Kq1Kq2 and Kq1Kq2?Kqd, and moreover we give a labelling which is optimal for these eight invariants simultaneously.  相似文献   

3.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

4.
Suppose that 0<η<1 is given. We call a graph, G, on n vertices an η-Chvátal graph if its degree sequence d1d2≤?≤dn satisfies: for k<n/2, dk≤min{k+ηn,n/2} implies dnkηnnk. (Thus for η=0 we get the well-known Chvátal graphs.) An -algorithm is presented which accepts as input an η-Chvátal graph and produces a Hamiltonian cycle in G as an output. This is a significant improvement on the previous best -algorithm for the problem, which finds a Hamiltonian cycle only in Dirac graphs (δ(G)≥n/2 where δ(G) is the minimum degree in G).  相似文献   

5.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

6.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

7.
Let G be a graph of order n and k a positive integer. A set of subgraphs H={H1,H2,…,Hk} is called a k-degenerated cycle partition (abbreviated to k-DCP) of G if H1,…,Hk are vertex disjoint subgraphs of G such that and for all i, 1≤ik, Hi is a cycle or K1 or K2. If, in addition, for all i, 1≤ik, Hi is a cycle or K1, then H is called a k-weak cycle partition (abbreviated to k-WCP) of G. It has been shown by Enomoto and Li that if |G|=nk and if the degree sum of any pair of nonadjacent vertices is at least nk+1, then G has a k-DCP, except GC5 and k=2. We prove that if G is a graph of order nk+12 that has a k-DCP and if the degree sum of any pair of nonadjacent vertices is at least , then either G has a k-WCP or k=2 and G is a subgraph of K2Kn−2∪{e}, where e is an edge connecting V(K2) and V(Kn−2). By using this, we improve Enomoto and Li’s result for n≥max{k+12,10k−9}.  相似文献   

8.
A graph G is said to be hamiltonian path saturated (HPS for short), if G has no hamiltonian path but any addition of a new edge in G creates a hamiltonian path in G. It is known that an HPS graph of order n has size at most and, for n?6, the only HPS graph of order n and size is Kn-1K1. Denote by sat(n,HP) the minimum size of an HPS graph of order n. We prove that sat(n,HP)?⌊(3n-1)/2⌋-2. Using some properties of Isaacs’ snarks we give, for every n?54, an HPS graph Gn of order n and size ⌊(3n-1)/2⌋. This proves sat(n,HP)?⌊(3n-1)/2⌋ for n?54. We also consider m-path cover saturated graphs and Pm-saturated graphs with small size.  相似文献   

9.
For a graph G, p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. Bondy and Locke [J.A. Bondy, S.C. Locke, Relative length of paths and cycles in 3-connected graphs, Discrete Math. 33 (1981) 111-122] consider the gap between p(G) and c(G) in 3-connected graphs G. Starting with this result, there are many results appeared in this context, see [H. Enomoto, J. van den Heuvel, A. Kaneko, A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225; M. Lu, H. Liu, F. Tian, Relative length of longest paths and cycles in graphs, Graphs Combin. 23 (2007) 433-443; K. Ozeki, M. Tsugaki, T. Yamashita, On relative length of longest paths and cycles, preprint; I. Schiermeyer, M. Tewes, Longest paths and longest cycles in graphs with large degree sums, Graphs Combin. 18 (2002) 633-643]. In this paper, we investigate graphs G with p(G)−c(G) at most 1 or at most 2, but with no hamiltonian paths. Let G be a 2-connected graph of order n, which has no hamiltonian paths. We show two results as follows: (i) if , then p(G)−c(G)≤1, and (ii) if σ4(G)≥n+3, then p(G)−c(G)≤2.  相似文献   

10.
A nonincreasing sequence of nonnegative integers π=(d1,d2,…,dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realizeπ. For a given graph H, a graphic sequence π is potentiallyH-graphic if there is some realization of π containing H as a (weak) subgraph. Let σ(π) denote the sum of the terms of π. For a graph H and nZ+, σ(H,n) is defined as the smallest even integer m so that every n-term graphic sequence π with σ(π)≥m is potentially H-graphic. Let denote the complete t partite graph such that each partite set has exactly s vertices. We show that and obtain the exact value of σ(Kj+Ks,s,n) for n sufficiently large. Consequently, we obtain the exact value of for n sufficiently large.  相似文献   

11.
Let n and k be integers with nk≥0. This paper presents a new class of graphs H(n,k), which contains hypercubes and some well-known graphs, such as Johnson graphs, Kneser graphs and Petersen graph, as its subgraphs. The authors present some results of algebraic and topological properties of H(n,k). For example, H(n,k) is a Cayley graph, the automorphism group of H(n,k) contains a subgroup of order 2nn! and H(n,k) has a maximal connectivity and is hamiltonian if k is odd; it consists of two isomorphic connected components if k is even. Moreover, the diameter of H(n,k) is determined if k is odd.  相似文献   

12.
Let G be a graph and SV(G). For each vertex uS and for each vV(G)−S, we define to be the length of a shortest path in 〈V(G)−(S−{u})〉 if such a path exists, and otherwise. Let vV(G). We define if v⁄∈S, and wS(v)=2 if vS. If, for each vV(G), we have wS(v)≥1, then S is an exponential dominating set. The smallest cardinality of an exponential dominating set is the exponential domination number, γe(G). In this paper, we prove: (i) that if G is a connected graph of diameter d, then γe(G)≥(d+2)/4, and, (ii) that if G is a connected graph of order n, then .  相似文献   

13.
Let G be a refinement of a star graph with center c. Let be the subgraph of G induced on the vertex set V(G)?{c or end vertices adjacent to c}. In this paper, we completely determine the structure of commutative zero-divisor semigroups S whose zero-divisor graph G=Γ(S) and S satisfy one of the following properties: (1) has at least two connected components, (2) is a cycle graph Cn of length n≥5, (3) is a path graph Pn with n≥6, (4) S is nilpotent and Γ(S) is a finite or an infinite star graph. For any finite or infinite cardinal number n≥2, we prove that for any nilpotent semigroup S with zero element 0, S4=0 if Γ(S) is a star graph K1,n. We prove that there is exactly one nilpotent semigroup S such that S3≠0 and Γ(S)≅K1,n. For several classes of finite graphs G which are refinements of a star graph, we also obtain formulas to count the number of non-isomorphic corresponding semigroups.  相似文献   

14.
Let G be a graph. Then the hamiltonian index h(G) of G is the smallest number of iterations of line graph operator that yield a hamiltonian graph. In this paper we show that for every 2-connected simple graph G that is not isomorphic to the graph obtained from a dipole with three parallel edges by replacing every edge by a path of length l≥3. We also show that for any two 2-connected nonhamiltonian graphs G and with at least 74 vertices. The upper bounds are all sharp.  相似文献   

15.
A graph G is (k+1)-critical if it is not k-colourable but Ge is k-colourable for any edge eE(G). In this paper we show that for any integers k≥3 and l≥5 there exists a constant c=c(k,l)>0, such that for all , there exists a (k+1)-critical graph G on n vertices with and odd girth at least ?, which can be made (k−1)-colourable only by the omission of at least cn2 edges.  相似文献   

16.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G).  相似文献   

17.
Let G be a graph with n vertices and m edges and let μ(G) = μ1(G) ? ? ? μn(G) be the eigenvalues of its adjacency matrix. Set s(G)=∑uV(G)d(u)-2m/n∣. We prove that
  相似文献   

18.
Let G be a graph of sufficiently large order n, and let the largest eigenvalue μ(G) of its adjacency matrix satisfies . Then G contains a cycle of length t for every t?n/320This condition is sharp: the complete bipartite graph T2(n) with parts of size n/2 and n/2 contains no odd cycles and its largest eigenvalue is equal to .This condition is stable: if μ(G) is close to and G fails to contain a cycle of length t for some t?n/321, then G resembles T2(n).  相似文献   

19.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

20.
Equitable colorings of Kronecker products of graphs   总被引:1,自引:0,他引:1  
For a positive integer k, a graph G is equitably k-colorable if there is a mapping f:V(G)→{1,2,…,k} such that f(x)≠f(y) whenever xyE(G) and ||f−1(i)|−|f−1(j)||≤1 for 1≤i<jk. The equitable chromatic number of a graph G, denoted by χ=(G), is the minimum k such that G is equitably k-colorable. The equitable chromatic threshold of a graph G, denoted by , is the minimum t such that G is equitably k-colorable for kt. The current paper studies equitable chromatic numbers of Kronecker products of graphs. In particular, we give exact values or upper bounds on χ=(G×H) and when G and H are complete graphs, bipartite graphs, paths or cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号