共查询到20条相似文献,搜索用时 15 毫秒
1.
Kreweras conjectured that every perfect matching of a hypercube for can be extended to a hamiltonian cycle of . Fink confirmed the conjecture to be true. It is more general to ask whether every perfect matching of for can be extended to two or more hamiltonian cycles of . In this paper, we prove that every perfect matching of for can be extended to at least different hamiltonian cycles of . 相似文献
2.
Denise Amar 《Discrete Mathematics》2009,309(11):3703-3713
We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We also show that the bound for the degree sum is almost the best possible. 相似文献
3.
Petr Gregor 《Discrete Mathematics》2009,309(6):1711-1713
Recently, Fink [J. Fink, Perfect matchings extend to Hamilton cycles in hypercubes, J. Combin. Theory Ser. B 97 (2007) 1074-1076] affirmatively answered Kreweras’ conjecture asserting that every perfect matching of the hypercube extends to a Hamiltonian cycle. We strengthen this result in the following way. Given a partition of the hypercube into subcubes of nonzero dimensions, we show for every perfect matching of the hypercube that it extends on these subcubes to a Hamiltonian cycle if and only if it interconnects them. 相似文献
4.
The Kneser graph K(n, k) has as its vertex set all k‐subsets of an n‐set and two k‐subsets are adjacent if they are disjoint. The odd graph Ok is a special case of Kneser graph when n = 2k + 1. A long standing conjecture claims that Ok is hamiltonian for all k>2. We show that the prism over Ok is hamiltonian for all k even. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:177‐188, 2011 相似文献
5.
6.
Zdzis?aw Skupień 《Discrete Mathematics》2009,309(22):6382-6390
We construct multigraphs of any large order with as few as only four 2-decompositions into Hamilton cycles or only two 2-decompositions into Hamilton paths. Nevertheless, some of those multigraphs are proved to have exponentially many Hamilton cycles (Hamilton paths). Two families of large simple graphs are constructed. Members in one class have exactly 16 hamiltonian pairs and in another class exactly four traceable pairs. These graphs also have exponentially many Hamilton cycles and Hamilton paths, respectively. The exact numbers of (Hamilton) cycles and paths are expressed in terms of Lucas- or Fibonacci-like numbers which count 2-independent vertex (or edge) subsets on the n-path or n-cycle. A closed formula which counts Hamilton cycles in the square of the n-cycle is found for n≥5. The presented results complement, improve on, or extend the corresponding well-known Thomason’s results. 相似文献
7.
Alan Frieze Xavier Prez‐Gimnez Pawe Praat Benjamin Reiniger 《Random Structures and Algorithms》2019,54(2):258-288
In this paper, we study the existence of perfect matchings and Hamiltonian cycles in the preferential attachment model. In this model, vertices are added to the graph one by one, and each time a new vertex is created it establishes a connection with m random vertices selected with probabilities proportional to their current degrees. (Constant m is the only parameter of the model.) We prove that if , then asymptotically almost surely there exists a perfect matching. Moreover, we show that there exists a Hamiltonian cycle asymptotically almost surely, provided that . One difficulty in the analysis comes from the fact that vertices establish connections only with vertices that are “older” (ie, are created earlier in the process). However, the main obstacle arises from the fact that edges in the preferential attachment model are not generated independently. In view of that, we also consider a simpler setting—sometimes called uniform attachment—in which vertices are added one by one and each vertex connects to m older vertices selected uniformly at random and independently of all other choices. We first investigate the existence of perfect matchings and Hamiltonian cycles in the uniform attachment model, and then extend the argument to the preferential attachment version. 相似文献
8.
A graph is uniquely hamiltonian if it contains exactly one hamiltonian cycle. In this note we prove that there are no r‐regular uniquely hamiltonian graphs when r > 22. This improves upon earlier results of Thomassen. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 233–244, 2007 相似文献
9.
We call a graph pancyclic if it contains at least one cycle of every possible length , for . In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to imply that the graph contains at least one chorded cycle of every possible length . In particular, certain paths and triangles with pendant paths are forbidden. 相似文献
10.
Cheng-Kuan Lin Jimmy J.M. Tan Hua-Min Huang D. Frank Hsu Lih-Hsing Hsu 《Discrete Mathematics》2009,309(17):5474-5483
A hamiltonian cycle C of a graph G is an ordered set u1,u2,…,un(G),u1 of vertices such that ui≠uj for i≠j and ui is adjacent to ui+1 for every i{1,2,…,n(G)−1} and un(G) is adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex and ui is the ith vertex of C. Two hamiltonian cycles C1=u1,u2,…,un(G),u1 and C2=v1,v2,…,vn(G),v1 of G are independent if u1=v1 and ui≠vi for every i{2,3,…,n(G)}. A set of hamiltonian cycles {C1,C2,…,Ck} of G is mutually independent if its elements are pairwise independent. The mutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at u.In this paper, the mutually independent hamiltonicity is considered for two families of Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn. It is proven that IHC(P3)=1, IHC(Pn)=n−1 if n≥4, IHC(Sn)=n−2 if n{3,4} and IHC(Sn)=n−1 if n≥5. 相似文献
11.
A set S of vertices in a graph G is said to be an edge-dominating set if every edge in G is incident with a vertex in S. A cycle in G is said to be a dominating cycle if its vertex set is an edge-dominating set. Nash-Williams [Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics, Academic Press, London, 1971, pp. 157-183] has proved that every longest cycle in a 2-connected graph of order n and minimum degree at least is a dominating cycle. In this paper, we prove that for a prescribed positive integer k, under the same minimum degree condition, if n is sufficiently large and if we take k disjoint cycles so that they contain as many vertices as possible, then these cycles form an edge-dominating set. Nash-Williams’ Theorem corresponds to the case of k=1 of this result. 相似文献
12.
Jinfeng Feng 《Mathematical Methods of Operations Research》2009,69(2):343-352
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian.
J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen,
Germany. 相似文献
13.
Ken-ichi Kawarabayashi 《Discrete Mathematics》2008,308(24):5899-5906
For a graph G, p(G) and c(G) denote the order of a longest path and a longest cycle of G, respectively. Bondy and Locke [J.A. Bondy, S.C. Locke, Relative length of paths and cycles in 3-connected graphs, Discrete Math. 33 (1981) 111-122] consider the gap between p(G) and c(G) in 3-connected graphs G. Starting with this result, there are many results appeared in this context, see [H. Enomoto, J. van den Heuvel, A. Kaneko, A. Saito, Relative length of long paths and cycles in graphs with large degree sums, J. Graph Theory 20 (1995) 213-225; M. Lu, H. Liu, F. Tian, Relative length of longest paths and cycles in graphs, Graphs Combin. 23 (2007) 433-443; K. Ozeki, M. Tsugaki, T. Yamashita, On relative length of longest paths and cycles, preprint; I. Schiermeyer, M. Tewes, Longest paths and longest cycles in graphs with large degree sums, Graphs Combin. 18 (2002) 633-643]. In this paper, we investigate graphs G with p(G)−c(G) at most 1 or at most 2, but with no hamiltonian paths. Let G be a 2-connected graph of order n, which has no hamiltonian paths. We show two results as follows: (i) if , then p(G)−c(G)≤1, and (ii) if σ4(G)≥n+3, then p(G)−c(G)≤2. 相似文献
14.
Thomassen proved that a strong tournament has a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices if and only if is not an almost transitive tournament of odd order, where an almost transitive tournament is obtained from a transitive tournament with acyclic ordering (i.e., for all ) by reversing the arc . A digraph is a local tournament if for every vertex of , both the out-neighbors and the in-neighbors of induce tournaments. Bang-Jensen, Guo, Gutin and Volkmann split local tournaments into three subclasses: the round decomposable; the non-round decomposable which are not tournaments; the non-round decomposable which are tournaments. In 2015, we proved that every 2-strong round decomposable local tournament has a Hamiltonian path and a Hamiltonian cycle which are arc-disjoint if and only if it is not the second power of an even cycle. In this paper, we discuss the arc-disjoint Hamiltonian paths in non-round decomposable local tournaments, and prove that every 2-strong non-round decomposable local tournament contains a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices. This result combining with the one on round decomposable local tournaments extends the above-mentioned result of Thomassen to 2-strong local tournaments. 相似文献
15.
16.
2012年,Bang-Jensen和Huang(J.Combin.Theory Ser.B.2012,102:701-714)证明了2-弧强的局部半完全有向图可以分解为两个弧不相交的强连通生成子图当且仅当D不是偶圈的二次幂,并提出了任意3-强的局部竞赛图中包含两个弧不相交的Hamilton圈的猜想.主要研究正圆有向图中的弧不相交的Hamilton路和Hamilton圈,并证明了任意3-弧强的正圆有向图中包含两个弧不相交的Hamilton圈和任意4-弧强的正圆有向图中包含一个Hamilton圈和两个Hamilton路,使得它们两两弧不相交.由于任意圆有向图一定是正圆有向图,所得结论可以推广到圆有向图中.又由于圆有向图是局部竞赛图的子图类,因此所得结论说明对局部竞赛图的子图类――圆有向图,Bang-Jensen和Huang的猜想成立. 相似文献
17.
A hamiltonian path (cycle) in an n-vertex 3-uniform hypergraph is a (cyclic) ordering of the vertices in which every three consecutive vertices form an edge. For large n, we prove an analog of the celebrated Dirac theorem for graphs: there exists n0 such that every n-vertex 3-uniform hypergraph H, n?n0, in which each pair of vertices belongs to at least n/2−1 (⌊n/2⌋) edges, contains a hamiltonian path (cycle, respectively). Both results are easily seen to be optimal. 相似文献
18.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected. 相似文献
19.
Heather Jordon 《Discrete Mathematics》2008,308(12):2440-2449
In this paper, we prove that cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Kn-I, exist if and only if and n≠2pα with p an odd prime and α?1. 相似文献
20.
The problem is considered under which conditions a 4-connected planar or projective planar graph has a Hamiltonian cycle containing certain prescribed edges and missing certain forbidden edges. The results are applied to obtain novel lower bounds on the number of distinct Hamiltonian cycles that must be present in a 5-connected graph that is embedded into the plane or into the projective plane with face-width at least five. Especially, we show that every 5-connected plane or projective plane triangulation on n vertices with no non-contractible cyles of length less than five contains at least distinct Hamiltonian cycles. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 81–96, 1999 相似文献