首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper generalizes the concept of locally connected graphs. A graph G is triangularly connected if for every pair of edges e1,e2E(G), G has a sequence of 3-cycles C1,C2,…,Cl such that e1C1,e2Cl and E(Ci)∩E(Ci+1)≠∅ for 1?i?l-1. In this paper, we show that every triangularly connected quasi claw-free graph on at least three vertices is vertex pancyclic. Therefore, the conjecture proposed by Ainouche is solved.  相似文献   

2.
We study fault tolerance of vertex k pancyclicity of the alternating group graph AGn. A graph G is vertex k pancyclic, if for every vertex pG, there is a cycle going through p of every length from k to |G|. Xue and Liu [Z.-J. Xue, S.-Y. Liu, An optimal result on fault-tolerant cycle-embedding in alternating group graphs, Inform. Proc. Lett. 109 (2009) 1197-1201] put the conjecture that AGn is (2n-7)-fault-tolerant vertex pancyclic, which means that if the number of faults |F|?2n-7, then AGn-F is still vertex pancyclic. Chang and Yang [J.-M. Chang, J.-S. Yang, Fault-tolerant cycle-embedding in alternating group graphs, Appl. Math. Comput. 197 (2008) 760-767] showed that for the shortest cycles the fault-tolerance of AGn is much lower. They noted that with n-2 faults one can cut all 3-cycles going through a given vertex p (it is easy to observe that the same set of faults cuts all 4- and 5-cycles going through p). On the other hand they show that AGn is n-3-fault tolerant vertex 3 pancyclic. In this paper we show that the cycles of length ?6 are much more fault-tolerant. More precisely, we show that AGn is (2n-6)-fault-tolerant vertex 6 pancyclic. This bound is optimal, because every vertex p has 2n-4 neighbors.  相似文献   

3.
Suppose that e is an edge of a graph G. Denote by me(G) the number of vertices of G that are not equidistant from both ends of e. Then the vertex PI index of G is defined as the summation of me(G) over all edges e of G. In this paper we give the explicit expressions for the vertex PI indices of four sums of two graphs in terms of other indices of two individual graphs, which correct the main results in a paper published in Ars Combin. 98 (2011).  相似文献   

4.
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996) [3], first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010) [11]. Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) [3] is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) [3].  相似文献   

5.
In this survey paper we review recent results on the vertex reconstruction problem (which is not related to Ulam’s problem) in Cayley graphs. The problem of reconstructing an arbitrary vertex x from its r-neighbors, that are, vertices at distance at most r from x, consists of finding the minimum restrictions on the number of r-neighbors when such a reconstruction is possible. We discuss general results for simple, regular and Cayley graphs. To solve this problem for given Cayley graphs, it is essential to investigate their structural and combinatorial properties. We present such properties for Cayley graphs on the symmetric group and the hyperoctahedral group (the group of signed permutations) and overview the main results for them. The choice of generating sets for these graphs is motivated by applications in coding theory, computer science, molecular biology and physics.  相似文献   

6.
Let G be a k-regular vertex transitive graph with connectivity κ(G)=k and let mk(G) be the number of vertex cuts with k vertices. Define m(n,k)=min{mk(G): GTn,k}, where Tn,k denotes the set of all k-regular vertex transitive graphs on n vertices with κ(G)=k. In this paper, we determine the exact values of m(n,k).  相似文献   

7.
令T是多部竞赛图;i(T)=|d+(x)-d-(y)|(这里允许x=y),如果i(T)=0,则T被称为是正则的;如果i(T)≤1,则T被称为是几乎正则的.Volkmann猜测几乎正则c-部竞赛图(c≥4)是泛圈的.本文证明当c≥5时,除了有限多个几乎正则多部竞赛图外,所有几乎正则c-部竞赛图都是点泛圈的.同时我们给出一个反例说明当c=4时,上述猜想不成立.  相似文献   

8.
We prove that the set of vertex-transitive graphs of finite degree is uncountably large.  相似文献   

9.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   

10.
It is shown that almost all graphs are unretractive, i.e. have no endomorphisms other than their automorphisms. A more general result has already been published in [V. Koubek, V. Rödl, On the minimum order of graphs with given semigroup, J. Combin. Theory Ser. B 36 (1984) 135–155]. In the paper at hand, a different proof is presented, following an approach of P. Erdős and A. Rényi that was used in their proof [P. Erdős, A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963) 295–315] that almost all graphs are asymmetric (have a trivial automorphism group). The approach is modified using an algebraically motivated reduction to idempotent endomorphisms. These take the role of the automorphisms in the proof of Erdős and Rényi. A bound of is provided for the ratio of retractive graphs among all graphs with n vertices, confirming an earlier statement by Babai [L. Babai, Automorphism groups, isomorphism, reconstruction, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), in: Handbook of Combinatorics, vol. 2, Elsevier, Amsterdam, 1995, pp. 1447–1540]. The fact that almost all graphs are unretractive and asymmetric can be summarized in the statement that almost all graphs are rigid (have a trivial endomorphism monoid), and the same bound can be obtained for corresponding ratios of nonrigid graphs.  相似文献   

11.
A vertex magic total (VMT) labeling of a graph G=(V,E) is a bijection from the set of vertices and edges to the set of integers defined by λ:VE{1,2,,|V|+|E|} so that for every xV, w(x)=λ(x)+xyEλ(xy)=k, for some integer k. A VMT labeling is said to be a super VMT labeling if the vertices are labeled with the smallest possible integers, 1,2,,|V|. In this paper we introduce a new method to expand some known VMT labelings of 2-regular graphs.  相似文献   

12.
13.
We investigate graphs G such that the line graph L(G) is hamiltonian connected if and only if L(G) is 3-connected, and prove that if each 3-edge-cut contains an edge lying in a short cycle of G, then L(G) has the above mentioned property. Our result extends Kriesell’s recent result in [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected line graph of a claw free graph is hamiltonian connected. Another application of our main result shows that if L(G) does not have an hourglass (a graph isomorphic to K5E(C4), where C4 is an cycle of length 4 in K5) as an induced subgraph, and if every 3-cut of L(G) is not independent, then L(G) is hamiltonian connected if and only if κ(L(G))≥3, which extends a recent result by Kriesell [M. Kriesell, All 4-connected line graphs of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306-315] that every 4-connected hourglass free line graph is hamiltonian connected.  相似文献   

14.
15.
极大全控点临界图   总被引:1,自引:0,他引:1  
王春香  费浦生 《应用数学》2007,20(1):191-195
图G的点集S如果满足:VG-S(或VG)中每个点相邻于S中的某个点(或而不是它本身),则称点集S是一个控制集(或全控制集).图G的所有控制集(或全控制集)中最小基数的控制集(或全控制集)中的点数,称为控制数(或全控数),记为γ(G)(或γt(G)).在这篇文章中我们特征化γt-临界图且满足γt(G)=n-Δ(G)的图特征,这回答了Goddard等人提出的一个问题.  相似文献   

16.
A classification is given of finite graphs that are vertex primitive and 2-arc regular. The classification involves various new constructions of interesting 2-arc transitive graphs.  相似文献   

17.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

18.
Fatemeh Mohammadi 《代数通讯》2013,41(10):3753-3764
In this article, Cohen–Macaulay chordal graphs and generalized star graphs are studied to show that all powers of the vertex cover ideal of such graphs have linear quotients. Moreover, it is shown that the Alexander dual of the clique complex of any chordal graph is vertex decomposable.  相似文献   

19.
An (r, n)-split coloring of a complete graph is an edge coloring with r colors under which the vertex set is partitionable into r parts so that for each i, part i does not contain Kn in color i. This generalizes the notion of split graphs which correspond to (2, 2)-split colorings. The smallest N for which the complete graph KN has a coloring which is not (r, n)-split is denoted by ƒr(n). Balanced (r,n)-colorings are defined as edge r-colorings of KN such that every subset of [N/r] vertices contains a monochromatic Kn in all colors. Then gr(n) is defined as the smallest N such that KN has a balanced (r, n)-coloring. The definitions imply that fr(n) gr(n). The paper gives estimates and exact values of these functions for various choices of parameters.  相似文献   

20.
We show that one can choose the minimum degree of a k‐connected graph G large enough (independent of the vertex number of G) such that G contains a copy T of a prescribed tree with the property that G ? V(T) remains k‐connected. This was conjectured in [W. Mader, J Graph Theory 65 (2010), 61–69]. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 324–329, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号