首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperbranched poly(methyl methacrylate)s (HPMMAs) have been successfully prepared by atom transfer radical copolymerization of MMA and divinylbenzene (DVB). Kinetic study shows complete consumption of the initiator in 0.5 h, and relatively low polymerization rate when DVB content in the feed was high. By analyzing MALDI-TOF spectra of the resulting copolymers, the linear A n B* (n = 0, 1, 2, 3) oligomers were formed in 0.5 h of polymerization, and then the oligomers reacted each other to form dimers, further reactions produced HPMMA. The SEC and NMR spectroscopies were used to trace the polymerization, and the results demonstrate that small amount of the branching reactions occur in the initial polymerization, and the branched polymers are significantly generated past a certain conversion depending upon the feed ratios. Raising the content of DVB in the monomer mixture can increase the pendent vinyl groups of the linear oligo-inimers, leading to gelation at low MMA conversion.  相似文献   

2.
Gu  Zi-xu  Cheng  Jun  Zhang  Ming-zu  He  Jin-lin  Ni  Pei-hong 《高分子科学》2017,35(9):1061-1072
Due to the non-crystalline properties of short chain perfluoroalkyl groups,using short chain perfluoroalkyl to stabilize low surface free energy polymers has been a challenging task.In this study,we prepare a series of random copolymers poly(perfluorohexylethyl methacrylate)-co-poly(stearyl acrylate) (P13FMA-co-PSA) and block copolymers poly(perfluorohexylethyl methacrylate)-b-poly(stearyl acrylate) (P13FMA-b-PSA),and systematically investigate the effects of the sequence structure and the content of 13FMA of the fluorinated copolymers on surface free energy and surface reorganization.Static/dynamic contact angle goniometry and water/oil repellency analyses demonstrate that the random polymer P13FMA-co-PSA could not achieve low surface free energy and low surface reorganization at the same time.In contrast,for the block copolymer P13FMA-b-PSA,both low surface free energy and low surface reorganization are acquired simultaneously.The results of X-ray photoelectron spectroscopy (XPS),dynamic contact angle goniometry and differential scanning calorimetry (DSC) reveal the above-mentioned properties.The consecutive 13FMA segments improve the surface fluorine density,while the consecutive SA chains enhance the crystallinity of the SA segments,and further hinder the surface reorganization of the perfluoroalkyl groups.Therefore,P13FMA-b-PSA exhibits a higher utilization efficiency of fluorine atoms and a better structural stability than P13FMA-co-PSA.  相似文献   

3.
Numerical calculations of the kinetic model of synthesis of hyperbranched polymers in the living radical polymerization mode were performed. Analytical expressions were obtained that make it possible to predict the maximum yield of hyperbranched polymers and their topological parameters, such as the branching frequency; the numbers of living ends, monomer units and multiple bonds per macromolecule; and the degree of conversion at the gel point. The model is based on the use of a branching monomer Mm that contains m ≥ 2 polymerizable bonds in its molecule in combination with a monomer M1 capable of forming linear chains only.  相似文献   

4.
A facile, safe and economical reducing agent, sodium hypophosphite(Na H2PO2·H2O), has been successfully employed for ambient temperature living radical copolymerization of styrene(St) and methyl methacrylate(MMA). Such effective reducing agent significantly improved the reactivity of low reactive St monomers during the copolymerization, where the reactivity ratios of St and MMA were determined to be 0.50 and 0.36 by Finemann-Ross method. Thus the copolymerizations proceeded fast and showed typical living/controlled features, as evidenced by pseudo first-order kinetics of polymerization, linear increase in molecular weight versus monomer conversion, and low polydispersity index values. Effects of the concentration of reducing agent and the monomer feed ratio on the copolymerization were investigated in detail. Furthermore, gel permeation chromatography and 1H-NMR analyses as well as chain extension experiments confirmed the high chain-end functionality of the resultant copolymer.  相似文献   

5.
Here we report the preparation of PEG‐based thermoresponsive hyperbranched polymers via a facile in situ reversible addition‐fragmentation chain transfer (RAFT) copolymerization using bis(thiobenzoyl) disulphide to form 2‐cyanoprop‐2‐yl dithiobenzoate in situ. This novel one‐pot in situ RAFT approach was studied firstly using methyl methacrylate (MMA) monomer, then was used to prepare thermoresponsive hyperbranched polymers by copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), poly(propylene glycol) methacrylate (PPGMA, Mn = 375) and up to 30 % of ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resultant PEGMEMA‐PPGMA‐EGDMA copolymers from in situ RAFT were characterized by Gel Permeation Chromatography (GPC) and 1H‐NMR analysis. The results confirmed the copolymers with multiple methacrylate groups and hyperbranched structure as well as RAFT functional residues. These water‐soluble copolymers with tailored compositions demonstrated tuneable lower critical solution temperature (LCST) from 22 °C to 32 °C. The phase transition temperature can be further altered by post functionalization via aminolysis of RAFT agent residues in polymer chains. Moreover, it was demonstrated by rheological studies and particle size measurements that these copolymers can form either micro‐ or macro photocrosslinked gels at suitable concentrations due to the presence of multiple methacrylate groups. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3751–3761  相似文献   

6.
Stereogradient polymers, a fundamentally new type of polymers, were prepared by the stereospecific living radical copolymerization of two monomers that have different stereospecificities and reactivities. The ruthenium-catalyzed living radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) and the silyl-capped HEMA [(tert-butyldimethylsilyl)-HEMA] (SiHEMA) in (CF3)2C(Ph)OH afforded stereogradient poly(HEMA), in which the rr content gradually increased from 62 to 77% at 0 degrees C, due to the lower reactivity and the higher syndiospecificity of SiHEMA.  相似文献   

7.
Copolymerization of the cyclic ketene acetal 5,6‐benzo‐2‐methylene‐1,3‐dioxepane (BMDO) with methyl methacrylate (MMA) is studied with respect to its copolymerization parameters and the suitability to control BMDO/MMA copolymerizations via the reversible addition‐fragmentation chain transfer (RAFT) technique to obtain linear and 4‐arm star polymers. BMDO shows disparate copolymerization behavior with MMA and r1 = 0.33 ± 0.06 and r2 = 6.0 ± 0.8 have been determined for polymerization at 110 °C in anisole from fitting copolymer composition vs. comonomer feed data to the Lewis–Mayo equation. Copolymerization of the two monomers is successful in RAFT polymerization employing a trithiocarbonate control agent. As desired, polymers contain only little amount of polyester units stemming from BMDO units and preliminary degradation experiment show that the polymer degrades slowly, but steadily in aqueous 1 M NaOH dispersion. Within ten days, the polymers are broken down to low molecular weight segments from an initial molecular weight of Mn = 6000 g mol?1. Star (co)polymerization with an erythritol‐based tetra‐functional RAFT agent following the Z‐group approach proceeds efficiently and polymers with a number‐average molecular weight of 10,000 g mol?1 are readily obtained that degrade in similar manner as the linear copolymer counterparts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1633–1641  相似文献   

8.
Bi-functional statistical copolymers, based on allyl methacrylate (AMA) and glycidyl methacrylate (GMA), were synthesized via atom transfer radical polymerization (ATRP). The polymerization reactions were carried out in a diphenyl ether solution at low temperature, 50 °C, using ethyl 2-bromoisobutyrate (EBrIB) as an initiator, and copper chloride with N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA) as the catalyst. Different aspects of the copolymerization, such as the kinetic behaviour, crosslink density and gel fraction were studied. The sol fractions of the synthesized copolymers were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. The reactivity ratios were calculated from the copolymer composition, determined by 1H NMR, and using the extended Kelen-Tüdös method. Values of 0.82 ± 0.04 and 1.22 ± 0.03 were obtained for AMA and GMA, respectively. The copolymer composition as a function of conversion degree for the different monomer molar fractions in the feed agreed with the theoretical values calculated from the Mayo-Lewis terminal model (MLTM).  相似文献   

9.
Copolymerization of an excess of methyl methacrylate (MMA) relative to 2-hydroxyethyl methacrylate (HEMA) was carried out in toluene at 80 °C according to both conventional and controlled Ni-mediated radical polymerizations. Reactivity ratios were derived from the copolymerization kinetics using the Jaacks method for MMA and integrated conversion equation for HEMA (rMMA = 0.62 ± 0.04; rHEMA = 2.03 ± 0.74). Poly(ethylene glycol) α-methyl ether, ω-methacrylate (PEGMA, Mn = 475 g mol−1) was substituted for HEMA in the copolymerization experiments and reactivity ratios were also determined (rMMA = 0.75 ± 0.07; rPEGMA ∼ 1.33). Both the functionalized comonomers were consumed more rapidly than MMA indicating the preferred formation of heterogeneous bottle-brush copolymer structures with bristles constituted by the hydrophilic (macro)monomers. Reactivity ratios for nickel-mediated living radical polymerization were comparable with those obtained by conventional free radical copolymerization. Interactions between functional monomers and the catalyst (NiBr2(PPh3)2) were observed by 1H NMR spectroscopy.  相似文献   

10.
Use of a room temperature ionic liquid as the medium for conventional free radical copolymerization of styrene and methyl methacrylate resulted in reactivity ratios that were significantly different from those obtained in conventional organic solvents or in bulk, demonstrating that polymerization in this alternative medium offers potential to create copolymers having new monomer sequences.  相似文献   

11.
Lignin is an important source of synthetic materials because of its abundance in nature, low cost, stable supply, and no competition to the human food supply. Lignin, a cross‐linked phenolic polymer, contains a large number of aromatic groups that can be used as a substitute for petroleum‐based aromatic fine chemicals. However, modification of lignin is necessary for its application in advanced materials due to its chemically inert nature and structural complexity. Polymeric modification of lignin via graft copolymerization represents an important avenue for modification because this method forms stable covalent bond linkages between lignin and synthetic functional polymers. In this review, we discuss recent synthetic strategies toward polymeric modification of lignin using graft copolymerization and the special properties and applications of the produced lignin copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3515–3528  相似文献   

12.
The first example of organostibine mediated controlled/living random copolymerization of styrene (St) and methyl methacrylate (MMA) was achieved by heating a solution of St/MMA/organostibine mediator at 100 °C or St/MMA/organostibine mediator/AIBN with various monomer feed ratios at 60 °C. The addition of AIBN significantly decreased the reaction temperature and enhanced the rate of copolymerization. The structure of poly(St-co-MMA) was verified by 1H NMR. The reactivity ratios at 60 °C were determined by the extended Kelen-Tüd?s method to be γSt = 0.40 and γMMA = 0.44. The ln([M]0/[M]) increased linearly with increasing reaction time. The number-average molecular weights of poly(St-co-MMA) increased linearly with conversion. Poly(St-co-MMA) with expected number-average molecular weight and low polydispersity index was formed. The living characteristic was further confirmed by chain-extension of poly(St-co-MMA) to form poly(St-co-MMA)-b-PMMA.  相似文献   

13.
14.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

15.
Copolymerization of acrylonitrile (AN) and ethyl methacrylate (EMA) using copper‐based atom transfer radical polymerization (ATRP) at ambient temperature (30 °C) using various initiators has been investigated with the aim of achieving control over molecular weight distribution. The effect of variation of concentration of the initiator, ligand, catalyst, and temperature on the molecular weight distribution and kinetics were investigated. No polymerization at ambient temperature was observed with N,N,N′,N′,N″‐pentamethyldiethylenetriamine (PMDETA) ligand. The rate of polymerization exhibited 0.86 order dependence with respect to 2‐bromopropionitrile (BPN) initiator. The first‐order kinetics was observed using BPN as initiator, while curvature in first‐order kinetic plot was obtained for ethyl 2‐bromoisobutyrate (EBiB) and methyl 2‐bromopropionate (MBP), indicating that termination was taking place. Successful polymerization was also achieved with catalyst concentrations of 25 and 10% relative to initiator without loss of control over polymerization. The optimum [bpy]0/[CuBr]0 molar ratio for the copolymerization of AN and EMA through ATRP was found to be 3/1. For three different in‐feed ratios, the variation of copolymer composition (FAN) with conversion indicated toward the synthesis of copolymers having slight changes in composition with conversion. The high chain‐end functionality of the synthesized AN‐EMA copolymers was verified by further chain extension with methyl acrylate and styrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1975–1984, 2006  相似文献   

16.
The nitroxide-mediated photo dispersion polymerization of methyl methacrylate (MMA) was performed by irradiation at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, (4-tert-butylphenyl)-diphenylsulfonium triflate as the photo-acid generator, and polyvinylpyrrolidone (PVP) as the surfactant in a mixed solvent of methanol/water = 3/1 (v/v). The MTEMPO-mediated photo dispersion polymerization produced spherical particles of PMMA, while the uncontrolled photo dispersion polymerization without MTEMPO provided nonspherical particles. The size distribution of the spherical particles decreased as the PVP concentration increased. The spherical particles showed a comparatively narrow molecular weight distribution of ca. 1.6. The livingness of the polymerization was confirmed on the basis of the linear correlations of the first-order time–conversion plots and conversion–molecular weight plots. The simultaneous control of the size distribution and molecular weight was possible as long as the light penetrates into the particles.  相似文献   

17.
Poly(lactic acid) polymers (PLA) are presently the most attractive compounds in the field of artificial degradable and biodegradable polymers. In order to enlarge the family, and thus the range of accessible properties, stereocopolymers and copolymers with various co-monomers have been synthesized. However, very few are functionalized, i.e. include functional groups attached to the main chains or as part of the side chains. In the search for degradable PLA-type polymers bearing functional groups to serve as intermediates for further chemical modifications, we are exploring two different routes. The first one is copolymerization with a protected hydroxyl-bearing lactide-type monomer, namely 3-(1,2,3,4-tetraoxobutyldiisopropylidene)dioxane-2,5-dione. The second route consists of the formation of a carbanionic site in the alpha-position to intrachain carbonyl functions by using lithium N,N-diisopropylamide followed by the coupling of electrophiles. Recent advances in this search are presented using several examples. In particular, it is shown that OH-functionalized PLA-type macromolecules can be made fluorescent by chemical coupling. It is also shown that substituents can be attached to PLA-type macromolecules in solution or to the surface of PLA-based devices selectively.  相似文献   

18.
A series of alpha-functional maleimide polymethacrylates (M(n) = 4.1-35.4 kDa, PDi = 1.06-1.27) have been prepared via copper-catalyzed living radical polymerization (LRP). Two independent synthetic protocols have been successfully developed and the polymers obtained in multigram scale, with an 80-100% content of maleimide reactive chain ends, depending on the method employed. A method for the synthesis of amino-terminated polymers, starting from Boc-protected amino initiators, has also been developed, as these derivatives are key intermediates in one of the two processes studied in the present work. The alternative synthetic pathway involves an initiator containing a maleimide unit "protected" as a Diels-Alder adduct. After the polymerization step, the maleimide functionality has been reintroduced by retro-Diels-Alder reaction, by simply refluxing those polymers in toluene for 7 h. These maleimido-terminated materials, poly(methoxyPEG((475))) methacrylates and poly(glycerol) methacrylates, differ for both the nature and size of the polymer side branches and showed an excellent solubility in water, a property that made them an ideal candidate for the synthesis of new polymer-(poly)peptide biomaterials. These functional polymers have been successfully employed in conjugation reactions in the presence of thiol-containing model substrates, namely, reduced glutathione (gamma-Glu-Cys-Gly) and the carrier protein, bovine serum albumin (BSA), in 100 mM phosphate buffer (pH 6.8-7.4) and ambient temperature.  相似文献   

19.
A study was made of the effects of five solvents on the compositions of copolymers of vinyl acetate (VA) and methyl methacrylate (MMA) produced by free radical polymerization from feeds rich in VA. The MMA content was reduced significantly by propanol, unaffected by benzene and ethyl acetate and increased by acetonitrile and acetone. The effects observed for propanol, acetonitrile and acetone all reached a maximum at a solvent to monomer molar ratio of about 7:1. Experiments showed that neither monomer physical aggregation nor monomer carbonyl polarization phenomena could explain completely the observed effects. A complete explanation probably requires several factors including some associated with polymer radical reactivity.  相似文献   

20.
Using a spatially intermittent reactor, the absolute rate constant for the termination reaction in free radical copolymerization has been measured for the monomer pair methyl methacrylate (MMA)–butyl methacrylate (BMA). For the pair MMA–dodecyl methacrylate (DMA) the relative rate constant for termination has been measured. In both cases the termination rate constant was a monotonically changing function of the monomer feed composition. This function can be well approximated by a simple calculation of the enchained monomer units' contributions to the average segmental friction coefficient of the copolymer chain. An attempt to apply a previously derived theoretical treatment based on penultimate unit effects produced physically unrealistic results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号