共查询到20条相似文献,搜索用时 31 毫秒
1.
Iman?Jabbari Zahir Abadi Omid?Sadeghi Hamid?Reza?Lotfizadeh Zhad Najmeh?Tavassoli Vahid?Amani Mostafa?M.?Amini
Nanoporous silica SBA-15 was prepared to evaluate its application as an oral drug delivery system. A series of surface-functionalized
nanopore materials as efficient clarithromycin delivery carriers was investigated. An efficient pH-responsive carrier system
was constructed by hydrogen bond interaction between carboxyl and hydroxyl groups in the clarithromycin and the amine group
in modified SBA-15. HPLC analyses of clarithromycin were run on a C18 column using a mobile phase comprised of potassium dihydrogen phosphate, acetonitrile and methanol (30:40:30, v/v/v). Active
molecules such as clarithromycin could be stored and released from the pore voids of SBA-15 by changing the pH. The amount
of clarithromycin stored in the pores of nanoporous silica based on TREN [tris(2-aminoethyl) amine]-modified SBA-15 rods was
up to 46 ± 4.8 wt% at pH 8. In addition, when the pH was below 4, clarithromycin was steadily released from the pores of SBA-15
(up to 97 wt% in simulated gastric medium). 相似文献
2.
Poly(ethylene glycol) dimethacrylate (PEGDMA) and methacrylic acid (MAA) based micro and nanoparticles were prepared and evaluated as a carrier for oral delivery of insulin. PEGDMA was synthesized by esterification reaction of the PEG4000 with MAA in the presence of an acid catalyst. Particles of different size were prepared by emulsion polymerization reaction using different concentration of sodium lauryl sulphate (SLS) as an emulsifying agent. Synthesized copolymeric particle were characterized by attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR), scanning electron microscopy, and acid value. The mean particle diameter of the polymeric micro and nanoparticles at various physiologically relevant pH values was measured using dynamic light scattering. Insulin loading efficiency of the particles was found to be directly proportional to the particle size and inversely proportional to the acid value of the particles. In vitro insulin release studies from various insulin loaded particles were performed by simulating the gastrointestinal tract conditions using HPLC. At pH 2.5, the release of insulin from polymeric particles was observed in the range of 5–8% while a significant higher release (20–35%) was observed at pH 7.4 during first 15 min of in vitro release. Largest size copolymeric particles of 8.3 µm also showed the highest efficiency to reduce the blood glucose level in diabetic rabbits. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Topical photodynamic therapy is used for a variety of malignant and pre-malignant skin disorders, including Bowen's Disease and Superficial Basal Cell Carcinoma. A haem precursor, typically 5-aminolevulinic acid (ALA), acting as a prodrug, is absorbed and converted by the haem biosynthetic pathway to photoactive protoprophyrin IX (PpIX), which accumulates preferentially in rapidly dividing cells. Cell destruction occurs when PpIX is activated by an intense light source of appropriate wavelength. Topical delivery of ALA avoids the prolonged photosensitivity reactions associated with systemic administration of photosensitisers but its clinical utility is influenced by the tissue penetration characteristics of the drug, its ease of application and the stability of the active agent in the applied dose. This review, therefore, focuses on drug delivery applications for topical, ALA-based PDT. Issues considered in detail include physical and chemical enhancement strategies for tissue penetration of ALA and subsequent intracellular accumulation of PpIX, together with formulation strategies and drug delivery design solutions appropriate to various clinical applications. The fundamental aspects of drug diffusion in relation to the physicochemical properties of ALA are reviewed and specific consideration is given to the degradation pathways of ALA in formulated systems that, in turn, influence the design of stable topical formulations. 相似文献
4.
5.
Coviello T Palleschi A Grassi M Matricardi P Bocchinfuso G Alhaique F 《Molecules (Basel, Switzerland)》2005,10(1):6-33
Scleroglucan is a natural polysaccharide, produced by fungi of the genus Sclerotium, that has been extensively studied for various commercial applications (secondary oil recovery, ceramic glazes, food, paints, etc.) and also shows several interesting pharmacological properties. This review focuses its attention on the use of scleroglucan, and some derivatives, in the field of pharmaceutics and in particular for the formulation of modified-release dosage forms. The reported investigations refer mainly to the following topics: natural scleroglucan suitable for the preparation of sustained release tablets and ocular formulations; oxidized and crosslinked scleroglucan used as a matrix for dosage forms sensitive to environmental conditions; co-crosslinked scleroglucan/gellan whose delivery rate can be affected by calcium ions. Furthermore, a novel hydrogel obtained with this polysaccharide and borate ions is described, and the particular structure of this hydrogel network has been interpreted in terms of conformational analysis and molecular dynamics. Profound attention is devoted to the mechanisms involved in drug release from the tested dosage forms that depend, according to the specific preparation, on swelling and/or diffusion. Experimental data are also discussed on the basis of a mathematical approach that allows a better understanding of the behavior of the tested polymeric materials. 相似文献
6.
Farah Benyettou Nawel Kaddour Thirumurugan Prakasam Gobinda Das Sudhir Kumar Sharma Sneha Ann Thomas Fadia Bekhti-Sari Jamie Whelan Mohammed A. Alkhalifah Mostafa Khair Hassan Traboulsi Renu Pasricha Ramesh Jagannathan Nassima Mokhtari-Soulimane Felipe Gndara Ali Trabolsi 《Chemical science》2021,12(17):6037
With diabetes being the 7th leading cause of death worldwide, overcoming issues limiting the oral administration of insulin is of global significance. The development of imine-linked-covalent organic framework (nCOF) nanoparticles for oral insulin delivery to overcome these delivery barriers is herein reported. A gastro-resistant nCOF was prepared from layered nanosheets with insulin loaded between the nanosheet layers. The insulin-loaded nCOF exhibited insulin protection in digestive fluids in vitro as well as glucose-responsive release, and this hyperglycemia-induced release was confirmed in vivo in diabetic rats without noticeable toxic effects. This is strong evidence that nCOF-based oral insulin delivery systems could replace traditional subcutaneous injections easing insulin therapy.We report the successful use of a gastro-resistant covalent organic framework for in vivo oral delivery of insulin. 相似文献
7.
Bailey MM Gorman EM Munson EJ Berkland C 《Langmuir : the ACS journal of surfaces and colloids》2008,24(23):13614-13620
Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 microm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. 相似文献
8.
To investigate the possibility of the enhancing effect of deformable vesicles on buccal delivery of insulin, two kinds of vesicles with and without the presence of sodium deoxycholate (deformable vesicles and conventional vesicles) were prepared by reverse phase evaporation methods. The liposomal entrapment efficiency was determined by column chromatography. The particle size and morphology of the vesicles were also evaluated. The hypoglycemic effects, insulin concentrations, and residual amounts of insulin deposited in the buccal membrane after buccal administration of insulin vesicles to rabbits were investigated. Compared with subcutaneous administration of insulin solution, the relative pharmacological bioavailability and the relative bioavailability of buccal administration of insulin vesicles were determined. The results showed that the entrapment efficiencies of the deformable and conventional vesicles were 18.87+/-1.78% (n=3) and 22.07+/-2.16% (n=3), respectively. The particle sizes of the deformable and conventional vesicles were 42.5+/-20.5 nm and 59.7+/-33.8 nm, respectively. There were no significant differences in appearance between the two types of vesicle. Compared with subcutaneous administration of insulin solution, the relative pharmacological bioavailability and the relative bioavailability in the insulin-deformable vesicles group were 15.59% and 19.78%, respectively, which were higher than in the conventional insulin vesicles (p<0.05), blank deformable vesicles and insulin mixture groups (p<0.05). Deformable vesicles have an enhancing effect on buccal delivery of insulin and may be a better carrier than conventional vesicles for buccal delivery of protein drugs. 相似文献
9.
Krishnan M. S. Xia Y. Tsao G. T. Kasthurikrishnan N. Srinivasan N. Cooks R. G. 《Applied biochemistry and biotechnology》1995,51(1):479-493
Applied Biochemistry and Biotechnology - Inhibitory effects of ethanol and glucose on a high-ethanol-tolerance yeast strain (fusion product ofSaccharomyces diastaticus andSaccharomyces uvarum)... 相似文献
10.
Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery 总被引:4,自引:0,他引:4
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. 相似文献
11.
12.
M.J. Martín-Alfonso P. Partal F.J. Navarro M. García-Morales C. Gallegos 《European Polymer Journal》2008,44(5):1451-1461
In this study, the suitability of a reactive polymer, synthesized by reaction of 4,4′-diphenylmethane diisocyanate (MDI) with a low molecular weight polyethylene-glycol (PEG), as a modifying agent for the manufacture of bitumen-based waterproof membranes, was evaluated. With that purpose, rheological and thermal analysis tests, and microstructural observations by AFM were carried out on different samples of modified bitumen having a MDI–PEG content ranging from 0 to 10 wt.%, cured at room temperature for a period of time within 0–30 days. The results obtained demonstrate that the addition of the reactive polymer proposed in this work to bitumen is very suitable at high in-service temperatures, because a noticeable increase in the values of viscosity, at 60 °C, of the resulting modified bitumen samples is observed on a time-scale of days. AFM observations, carried out at 50 °C, evidenced that the reactive polymer MDI–PEG leads to a new microstructure, displaying a higher level of stiffness. Therefore, this polymer should be seriously taken into consideration as a modifier of bituminous coatings for the waterproofing industry. 相似文献
13.
A single-stranded DNA, readily extracted from industrial discarded salmon milt, was used to prepare hydrogels and complex gels by cross-linking with gelatin and kappa-carrageenan, for the oral delivery of probiotic bacteria. The complex gels showed a higher protective capability over the hydrogels for approximately one log scale. However, the hydrogels were more stable during storage at 4 degrees C. The Lactobacillus and Lactococcus due to protection of the hydrogels could better tolerate to acid than the Bifidobacterium. Furthermore, food-graded hydrogels were prepared and optimized to a similar protective capability for future applications. 相似文献
14.
15.
Ghasem Rezanejade Bardajee Ali PourjavadiRouhollah Soleyman 《Colloids and surfaces. A, Physicochemical and engineering aspects》2011,392(1):16-24
A novel nano-porous hydrogel (NPH) was synthesized via graft copolymerization of sodium acrylate (Na-AA) and acrylamide (AAm) onto salep backbones and its application as a carrier matrix for oral delivery of tetracycline hydrochloride (TH) was investigated. The Taguchi method as a strong experimental design tool was used for synthesis optimization. The swelling behavior of optimum hydrogel was measured in various media. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetrical analysis (TGA). The study of the surface morphology of the hydrogels using SEM and AFM showed a nanoporous (average pore size: 180 nm) structure for the sample obtained under optimized conditions. The drug delivery results demonstrated that this NPH could successfully deliver a drug to the intestine without losing the drug in the stomach, and could be a good candidate as an orally administrated drug delivery system. 相似文献
16.
Joshi HM Bhumkar DR Joshi K Pokharkar V Sastry M 《Langmuir : the ACS journal of surfaces and colloids》2006,22(1):300-305
Nanomaterials have gained tremendous importance in biology and medicine because they can be used as carriers for delivering small molecules such as drugs, proteins, and genes. We report herein the binding of the hormone insulin to gold nanoparticles and its application in transmucosal delivery for the therapeutic treatment of diabetes mellitus. Insulin was loaded onto bare gold nanoparticles and aspartic acid-capped gold nanoparticles and delivered in diabetic Wistar rats by both oral and intranasal (transmucosal) routes. Our principle observations are that there is a significant reduction of blood glucose levels (postprandial hyperglycemia) when insulin is delivered using gold nanoparticles as carriers by the transmucosal route in diabetic rats. Furthermore, control of postprandial hyperglycemia by the intranasal delivery protocol is comparable to that achieved using the standard subcutaneous administration used for type I diabetes mellitus, thus showing considerable promise for further development. 相似文献
17.
18.
Frederic Eeckman 《European Polymer Journal》2004,40(4):873-881
Poly(N-isopropylacrylamide) (PNIPAAm) copolymers were synthesized in order to obtain co-polymers with a phase transition temperature slightly higher than the physiological temperature, as required by a new drug delivery concept described in a previous paper. Six hydrophilic comonomers bringing about a rise of the phase transition temperature were evaluated. The synthesized copolymers were characterized and the influence of the type and of the amount of the used comonomer on the phase transition temperature was discussed. Among the comonomers, Acrylamide (AAm), N-methyl-N-vinylacetamide (MVA), N-vinylacetamide (NVA), and N-vinyl-2-pyrrolidinone (VPL) were found to be capable to raise the phase transition temperature to a value slightly higher than 37 °C and to have adequate phase transition behavior. The selected four copolymers were subjected to an additional purification step that should make them fit to use as a controlling agent in drug delivery systems. 相似文献
19.
Lokesh Pawar Ramesh Jayaramaiah Baburaj Krishnan Athimoolam Arunachalampillai Ying Chen Andrew T. Parsons Jo Anna Robinson Jason S. Tedrow 《Tetrahedron》2019,75(32):4266-4270
The development of a phase-appropriate manufacturing-scale synthesis of potassium 2-fluoro-6-hydroxyphenyltrifluoroborate was achieved. Investigations into improving the yield and robustness indicated that pH of the reaction medium is a critical process parameter. Additional development resulted in replacing tartaric acid with citric acid, resulting in improved process robustness and enabling scale-up to >10 kg. 相似文献
20.
Odinokov A. V. Dzhons D. Yu. Budruev A. V. Mochalova A. E. Smirnova L. A. 《Russian Chemical Bulletin》2016,65(4):1122-1130
Russian Chemical Bulletin - pH- and thermo-sensitive hydrogels based on chitosan cross-linked with terephthaloyl diazide were synthesized. A new formulation of the polysaccharide modified with... 相似文献