首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
李晓东 《物理化学学报》2007,23(11):1792-1796
运用B3LYP方法在6-31G*基组水平上对C50富勒烯以及它的两个不同二聚物C100、C101的几何构型进行了全优化. 在优化所得构型的基础上, 采用TDB3LYP方法在3-21G*基组水平上对其激发态性质、电子吸收光谱进行了研究, 根据计算得到的态态间跃迁偶极矩和跃迁能等数据, 结合使用态求和公式进一步计算得到了它们不同光学过程中的三阶非线性极化率. 结果表明, 当C50富勒烯二聚以后, 其电子吸收光谱的最大波长吸收峰发生了明显的红移, 三阶非线性极化率有了较大的提高. 其中, [5,5]-[5,5]哑铃型二聚物C101有着比[2+2]闭环型二聚物C100更大的三阶非线性极化率.  相似文献   

2.
Calculations on donor-acceptor molecular pairs of tetraalkylammonium halide/carbon tetrabromide complexes are provided to investigate structure/property-related linear and nonlinear optical properties by using the time-dependent density functional theory technique coupled with the sum-over-states method. The calculated energies of the first allowed electronic transition decrease, and the nonresonant third-order polarizabilities at the THG, EFISHG, and DFWM optical processes increase progressively from [DBU-H+Br-.CBr(4) to [NPr(4)Br.CBr(4)] to [NMe(4)Br.CBr(4)]. The obtained electronic absorption spectra show a progressive red shift with increasing donor strength from Cl to I for [NR(4)h.CBr(4)] (h = Cl, Br, and I). The charge transfers from the halogen donor to the carbon tetrabromide acceptor make significant contributions to the electronic absorption spectra in the low-energy zone and the third-order polarizabilities in the nonresonant frequency region. The counterion indirectly affects the electronic absorption and third-order polarizability spectra through the interactions between the donor and acceptor.  相似文献   

3.
The dependence of the optical properties of [C(12)H(12)N(4)O(2)AgPF(6)](2) (dimer-1) and [C(28)H(28)N(6)O(3)AgPF(6)](2) (dimer-2) on the arrangement of the oxime moieties in the molecule and in bulk crystals was investigated by means of time-dependent density functional theory. Dimer-1 with simple pyridine oxime ligands and a wavy arrangement has a smaller dipole moment and larger transition energy between the two states, and thus smaller third-order polarizabilities and two-photon absorption cross sections. Dimer-2 with extended pyridine oxime ligands and a ladder arrangement has a larger dipole moment and smaller transition energy between the two states, and thus larger third-order polarizabilities and two-photon absorption cross sections. The lowest energy absorption band is red-shifted for dimer-2 as compared with dimer-1, due to more pronounced pi-pi delocalization interactions and weaker hydrogen bonding in dimer-2. The electronic absorption spectra, frequency-dependent third-order polarizabilities, and two-photon absorption cross sections involve significant contributions from charge transfers from pi/pi* orbitals of the pyridine oxime ligands but no contribution from PF(6) (-) ions or H(2)O molecules in the wavelength range studied for the monomers and dimers of the C(12)H(12)N(4)O(2)AgPF(6) and C(28)H(28)N(6)O(3)AgPF(6) molecules. The third-order susceptibilities and two-photon absorption coefficients of bulk solids were estimated on the basis of the optical properties of the corresponding dimers, and the bulk material constructed from dimer-2 has the larger optical parameters of the two.  相似文献   

4.
Repeated methanolysis of [Zr(3)O](OPr(n)(10) followed by extraction and crystallization from toluene yields material that is X-ray crystallographically indistinguishable from the compound previously formulated as [Zr(13)O(8)](OMe)(36). Elemental analysis and (1)H solution NMR spectroscopy strongly suggest that this material is a mixture of methyltriskaidecazirconates (MTZ) [Zr(13)O(8)](OMe)(x)(OH)(36)(-)(x), x(av) approximately 20, that readily cocrystallize from hydrocarbon solution. These species have the metal-oxygen framework structure reported for [Zr(13)O(8)](OMe)(36), where the 13 zirconium and 32 bridging oxygen atoms comprise a fragment of the fluorite structure adopted by ZrO(2) at elevated temperatures. Ethanolysis of [Zr(3)O](OPr(n)(10) yields its ethyl analogue, [Zr(3)O](OEt)(10). Both trizirconates display temperature-dependent (1)H solution NMR spectra that are interpreted mechanistically in terms of rearrangement mechanisms involving trigonal twists at the octahedral zirconium centers.  相似文献   

5.
The electrochemical and optical properties of films prepared from two different Fe(II) coordination polymers (TPT[Fe(II)TPT](n)(PF(6))(2)(n) (TPT = terpyridine-phenyl-terpyridine) and CTPCT[Fe(II)CTPCT](n)(PF(6))(2)(n) (CTPCT = chiral terpyridine-phenyl-chiral terpyridine)) and a coordination polymer based on Cu(I) metal centers (PDP[Cu(I)PDP](n)(BF(4))(n)) (PDP = phenanthroline-dodecane-phenanthroline) have been studied. The oxidation of a PDP[Cu(I)PDP](n)(BF(4))(n) film coated on an indium-tin oxide (ITO) electrode by stepping the potential from 0.0 to +1.4 V vs Ag/AgCl led not only to the complete bleaching of the absorption in the visible region of the spectrum within 5 min but also to a redox-induced dissociation and dissolution of the polymer. The reverse reaction of binding and reassembling the polymer at the electrode surface, upon stepping the potential back to 0.0 V, occurred with a rate which was at least 1 order of a magnitude slower. In contrast, the bis(2,2':6',2' '-terpyridine)iron(II)-based redox polymers TPT[Fe(II)TPT](n)(PF(6))(2)(n) and CTPCT[Fe(II)CTPCT](n)(PF(6))(2)(n), during similar spectroelectrochemical experiments, not only exhibited a dramatically enhanced switching rate but also displayed symmetric switching kinetics. The films did not show signs of deterioration over 150 switching cycles. Additionally, in an effort to assemble an electrochromic device with chiroptical properties, the electrochromism of films generated from the enantiomerically pure CTPCT[Fe(II)CTPCT](n)(PF(6))(2)(n) polymer was studied through circular dichroism.  相似文献   

6.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

7.
The tritopic bridging ligand hexaazatriphenylene (HAT) has been used to prepare the mono-, di-, and trinuclear cyanoruthenate complexes [Ru(CN)(4)(HAT)](2-) ([1](2-)), [{Ru(CN)(4)}(2)(mu(2)-HAT)](4-) ([2](4-)), and [{Ru(CN)(4)}(3)(mu(3)-HAT)](6-) ([3](6-)). These complexes are of interest both for their photophysical properties and ability to act as sensitizers, associated with strong MLCT absorptions; and their structural properties, with up to 12 externally directed cyanide ligands at a single "node" for preparation of coordination networks. The complexes are strongly solvatochromic, with broad and intense MLCT absorption manifolds arising from the presence of low-lying pi* orbitals on the HAT ligand, as confirmed by DFT calculations; in aprotic solvents [3](6-) is a panchromatic absorber of visible light. Although nonluminescent in fluid solution, the lowest MLCT excited states have lifetimes in D(2)O of tens of nanoseconds and could be detected by time-resolved IR spectrosocopy. For dinuclear [2](4-) and trinuclear [3](6-) the TRIR spectra are indicative of asymmetric MLCT excited states containing distinct Ru(III) and Ru(II) centers on the IR time scale. The complexes show red (3)MLCT luminescence as solids and in EtOH/MeOH glass at 77 K. Ln(III) salts of [1](2-), [2](4-), and [3](6-) form infinite coordination networks based on Ru-CN-Ln bridges with a range of one-, two-, and three-dimensional polymeric structures. In the Yb(III) and Nd(III) salts of [3](6- )the complex anion forms an 8-connected node. Whereas all of the Gd(III) salts show strong (3)MLCT luminescence in the solid state, the Ru-based emission in the Nd(III) and Yb(III) analogues is substantially quenched by Ru --> Ln photoinduced energy transfer, which results in sensitized near-infrared luminescence from Yb(III) and Nd(III).  相似文献   

8.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   

9.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

10.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

11.
The reaction of [n-Bu(2)SnO](n) with 1,5-naphthalenedisulfonic acid tetrahydrate in a 1:1 stoichiometry followed by reaction with 2,2'-bipyridine-N,N'-dioxide (BPDO-I) afforded a 1D-coordination polymer [n-Bu(2)Sn(BPDO-I)(1,5-C(10)H(6)(SO(3))(2))](n) (1) where the disulfonate ligand acts as a bridging ligand between two tin centers. An analogous reaction involving [Ph(2)SnO](n) afforded a trihydrated O,O'-chelated diorganotin cation [{Ph(2)Sn(BPDO-I)(H(2)O)(3)}(2+)][C(10)H(6)(SO(3)(-))(2)]·2CH(3)OH (2·2CH(3)OH). Utilizing two equivalents of BPDO-I in this reaction resulted in the ionic complex [{Ph(2)Sn(BPDO-I)(2)(H(2)O)}(2+)][C(10)H(6)(SO(3)(-))(2)]·3H(2)O (3·3H(2)O). In 2 and 3 the sulfonate ligands are not present in the coordination sphere of tin. Reaction of [n-Bu(2)SnO](n) and 1,5-naphthalenedisulfonic acid tetrahydrate, followed by reaction with [bis(diphenylphosphoryl)methane (DPPOM)] resulted in the formation of, [{n-Bu(2)Sn(DPPOM)(2)(H(2)O)(1,5-C(10)H(6)(SO(3))(SO(3)(-))}]·H(2)O (4·H(2)O). Of the two coordinating groups present in DPPOM, only one P=O group is coordinated to the tin atom. The remaining P=O motif is free and is involved in intramolecular H-bonding with the tin-bound water molecule. Using [Ph(2)SnO](n) instead of [n-Bu(2)SnO](n) afforded the ionic complex [{Ph(2)Sn(DPPOM)(2)}(2+){1,5-C(10)H(6)(SO(3)(-))(2)}] (5) where the DPPOM functions as a chelating ligand. The reaction of [n-Bu(2)SnO](n) with 1,5-naphthalenedisulfonic acid tetrahydrate followed by addition of one equivalent of 8-hydroxyquinoline (8-HQ) in presence of triethylamine afforded the neutral dinuclear complex, [(H(2)O)(8-Q)n-Bu(2)Sn(μ-1,5-C(10)H(6)(SO(3))(2))n-Bu(2)Sn(8-Q)(H(2)O)] (6) where the two tin atoms are bridged by the disulfonate ligand. Compounds 1-6 are thermally stable as shown by their thermogravimetric analyses.  相似文献   

12.
Systematic synthesis routes have been developed for the linear-shaped rhenium(I) oligomers and polymers bridged with bidentate phosphorus ligands, [Re(N--N)(CO)3-PP-{Re(N--N)(CO)2-PP-}(n)Re(N--N)(CO)3](PF6)(n+2) (N--N = diimine, PP = bidentate phosphine, n = 0-18). These were isolated by size exclusion chromatography (SEC) and identified by (1)H NMR, IR, electrospray ionization Fourier transform mass spectrometry, analytical SEC, and elemental analysis. Crystal structures of [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)2, [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)2-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)3 and [Re(bpy)(CO)3-Ph2PC2H4PPh2-{Re(bpy)(CO)2Ph2PC2H4PPh2-}(n)Re(bpy)(CO)3](PF6)(n+2) (bpy = 2,2'-bipyridine, n = 1, 2) were obtained, showing that they have interligand pi-pi interaction between the bpy ligand and the phenyl groups on the phosphorus ligand. All of the oligomers and polymers synthesized were emissive at room temperature in solution. For the dimers, broad emission was observed with a maximum at 523-545 nm, from the (3)MLCT excited-state of the tricarbonyl complex unit, [Re(N--N)(CO)3-PP-]. Emission from the longer oligomers and polymers with > or = 3 Re(I) units was observed at wavelengths 50-60 nm longer than those of the corresponding dimers. This fact and the emission decay results clearly show that energy transfer from the edge unit to the interior unit occurs with a rate constant of (0.9 x 10(8))-(2.5 x 10(8)) s(-1). The efficient energy transfer and the smaller exclusive volume of the longer Re(I) polymers indicated intermolecular aggregation for these polymers in an MeCN solution.  相似文献   

13.
X-ray structural and spectroscopic properties of a series of heterodinuclear d(8)-d(10) metal complexes [M'M' '(mu-dcpm)(2)(CN)(2)](+) containing d(8) Pt(II), Pd(II), or Ni(II) and d(10) Au(I), Ag(I), or Cu(I) ions with a dcpm bridging ligand have been studied (dcpm = bis(dicyclohexylphosphino)methane; M' = Pt, M' ' = Au 4, Ag 5, Cu, 6; M' ' = Au, M' = Pd 7, Ni 8). X-ray crystal analyses showed that the metal...metal distances in these heteronuclear metal complexes are shorter than the sum of van der Waals radii of the M' and M' ' atoms. The UV-vis absorption spectra of 4-6 display red-shifted intense absorption bands from the absorption spectra of the mononuclear trans-[Pt(phosphine)(2)(CN)(2)] and [M' '(phosphine)(2)](+) counterparts, attributable to metal-metal interactions. The resonance Raman spectra confirmed assignments of (1)[nd(sigma)-->(n + 1)p(sigma)] electronic transitions to the absorption bands at 317 and 331 nm in 4 and 6, respectively. The results of theoretical calculations at the MP2 level reveal an attractive interaction energy curve for the skewed [trans-Pt(PH(3))(2)(CN)(2)-Au(PH(3))(2)(+)] dimer. The interaction energy of Pt(II)-Au(I) was calculated to be ca. 0.45 ev.  相似文献   

14.
本文报道了一个多酸簇合物[Cu4(PPh3)6][Mo8O26]的合成、X-射线单晶结构分析及IR、XRD表征.单品结构表明中心对称的[Mo8O26]4-是由8个共边的MoO6八面体组成.该化合物具有较好的三阶非线性光学性质,其三阶非线性吸收和折射系数分别为12.9×10-11 MKS和3.13×10-11 esu.  相似文献   

15.
Three generations of pyrenyl bis-MPA dendrimers with two different end-groups, acetonide (pyr(Gn)) or alcohol (pyr(Gn-OH)) (n = 1-3), were synthesized, and the pyrenyl group of the dendritic molecules was encapsulated in the arene ruthenium metallacages, [Ru(6)(p-cymene)(6)(OO∩OO)(3)(tpt)(2)](6+) (OO∩OO = 5,8-dioxydo-1,4-naphtaquinonato (donq) [1](6+) and 6,11-dioxydo-5,12-naphtacenedionato (dotq) [2](6+); tpt =2,4,6-tri(pyridin-4-yl)-1,3,5-triazine). The host-guest properties of [guest?1](6+) and [guest?2](6+) were studied in solution by NMR and UV-vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water-soluble host-guest systems and the pyrenyl-dendrimers was evaluated on human ovarian cancer cells.  相似文献   

16.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

17.
Hexarhenium(III) complexes with terminal isothiocyanate ligands, [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)(NCS)(6)] (1) and (L)(4)[Re(6)(mu(3)-Se)(8)(NCS)(6)] (L(+) = PPN(+) (2a), (n-C(4)H(9))(4)N(+) (2b)), have been prepared by three different methods. Complex 1 was prepared by the reaction of [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] with molten KSCN at 200 degrees C, while 2b was obtained by refluxing the chlorobenzene-DMF (2:1 v/v) solution of [Re(6)(mu(3)-Se)(8)(CH(3)CN)(6)](SbF(6))(2) and [(n-C(4)H(9))(4)N]SCN. The [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-) anion was also obtained from a mixture of Cs(2)[Re(6)(mu(3)-Se)(8)Br(4)] and KSCN in C(2)H(5)OH by a mechanochemical activation at room temperature for 20 h and isolated as 2a. The X-ray structures of 1 and 2a.4DMF have been determined (1, C(70)H(144)N(10)S(14)Re(6), monoclinic, space group P2(1)/n (No. 14), a = 14.464(7) A, b = 22.059(6) A, c = 16.642(8) A, beta = 113.62(3) degrees, V = 4864(3) A(3), Z = 2; 2a.4DMF, C(162)H(144)N(14)O(4)P(8)S(6)Se(8)Re(6), triclinic, space group P1 (No. 2), a = 15.263(2) A, b = 16.429(2) A, c = 17.111(3) A, alpha = 84.07(1) degrees, beta = 84.95(1) degrees, gamma = 74.21(1) degrees, V = 4098.3(8) A(3), Z = 1). All the NCS(-) ligands in both complexes are coordinated to the metal center via nitrogen site with the Re-N distances in the range of 2.07-2.13 A. The redox potentials of the reversible Re(III)(6)/Re(III)(5)Re(IV) process in acetonitrile are +0.84 and +0.70 V vs. Ag/AgCl for [Re(6)(mu(3)-S)(8)(NCS)(6)](4)(-) and [Re(6)(mu(3)-Se)(8)(NCS)(6)](4)(-), respectively, which are the most positive among the known hexarhenium complexes with six terminal anionic ligands. The complexes show strong red luminescence with the emission maxima (lambda(max)/nm), lifetimes (tau(em)/micros), and quantum yields (phi(em)) being 745 and 715, 10.4 and 11.8, and 0.091 and 0.15 for 1 and 2b, respectively, in acetonitrile. The data reasonably well fit in the energy-gap plots of other hexarhenium(III) complexes. The temperature dependence of the emission spectra and tau(em) of 1 and [(n-C(4)H(9))(4)N](4)[Re(6)(mu(3)-S)(8)Cl(6)] are also reported.  相似文献   

18.
A copper(I) thiocyanate coordination polymer [Cu(Phen)(μ-NCS)]n (I) (Phen = 1,10-phenan-throline) has been synthesized by the low-temperature solid-state reaction. Single-crystal X-ray analyses reveal that compound I possesses a type of one-dimensional (1D) framework structure. Polymer I was characterized by elemental analyses, IR spectra, and UV-visifele spectra. The third-order nonlinear optical properties were also investigated, and they exhibit good nonlinear absorption and self-defocusing performance with modulus of the hyperpolarizability 4.94 × 10−30 esu for I in a 6.35 × 10−4 mol dm−3 DMF solution.  相似文献   

19.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

20.
In this paper, we have calculated the third-order nonlinear optical polarizabilities corresponding to three optical processes: third-harmonic generation (THG), electric-field-induced second-harmonic generation (EFISHG) and degenerate four-wave mixing (DFWM) for B12N12, B24N24 and B36N36 clusters. The calculations have been performed by employing ab initio time-dependent density functional theory combined with sum-over-states method (SOS//TDDFT). We obtained the similar dynamic behavior of third-order NLO polarizabilities for three BN clusters. At input photon energy below 1.25 eV, the resonance enhancements of response haven't occurred. This is due to the fact that the calculated BN clusters have the large transition energy. B24N24 cluster has the larger transition dipole moments and the third-order polarizabilities of B24N24 are much larger than those of B12N12 and B36N36. We also estimate the static third-order optical susceptibility χ(3) for BN fullerene materials from the average static third-order polarizability <γ>. The static χ(3) of B24N24 fullerene materials are 1.36×10−14 esu for three NLO processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号