首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric structures and isomeric stabilities of various stationary points in C(2)H(2)Si neutral and its cation and anion are investigated at the coupled-cluster singles, doubles (triples) [CCSD(T)] level of theory. For the geometrical survey, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality (cc-pVTZ) for the neutral and cation. For the anions, the cc-pVTZ basis sets with diffuse functions (aug-cc-pVTZ) are used. The final energies are calculated by the use of the CCSD(T) level of theory with the aug-cc-pVTZ basis set at their optimized geometries. To lower lying neutrals and cations, the Dunning's correlation consistent basis sets of quadruple-zeta quality (cc-pVQZ) are also applied. Both the global minima of the C(2)H(2)Si neutral and cation, N-1 (C(2v):(1)A(1)) and C-1 (C(2v):(2)B(2)), respectively, are silacyclopropenylidene conformers, having a CCSi ring with a C[Double Bond]C double bond. No competitive stable isomers exist in the present C(2)H(2)Si neutral. In the cation, however, the second lowest lying isomer C-2 lies 10.8 kJ/mol above the most stable C-1. The vertical and adiabatic ionization potentials from the lowest lying neutral N-1 are 9.83 and 8.97 eV, respectively, at the CCSD(T)/cc-pVQZ level of theory. The electron addition to the N-1 does not result in the anion with positive (real) electron affinities. On the other hand, the electron addition to the N-2 isomer produces the global minimum anion A-1 (C(2v):(2)B(1)) with the positive electron affinities of 1.13 eV. The second lowest lying anion isomer A-2 with silylenylacetylene conformer, produced from an electron addition to the N-3 neutral, very well competes with the A-1 after the zero-point vibrational energy corrections. The energy difference between the two lowest lying isomers of the neutral and its anion, N-1 and A-1, is only 0.39 eV.  相似文献   

2.
The geometric structures, isomeric stabilities, and potential energy profiles of various isomers and transition states in Si(3)H(2) neutral, cation and anion are investigated at the coupled-cluster singles, doubles (triples) level of theory. For the geometrical survey, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality (cc-pVTZ) for the neutral and cation and the Dunning's correlation consistent basis sets of double-zeta quality with diffuse functions (aug-cc-pVDZ) for the anion. For the final energy calculations, the aug-cc-pVTZ: Dunning's correlation consistent basis sets of triple-zeta quality with diffuse functions and cc-pVQZ: Dunning's correlation consistent basis sets of quadruple-zeta quality basis sets are used for the neutral and the aug-cc-pVTZ ones for the cation and anion. The global minimum neutral (I-1: (1)A(1)) has the same framework as that (cyclopropenylidene) of the C(3)H(2) molecule. Other low-lying three isomers (I-2, I-3, and I-4) are also predicted to be within 20 kJ/mol. Five transition states are optimized and their energy relationships with the isomers are clarified. The geometric structure of the global minimum cation (C-1: (2)A(1)) has the same framework as that of the neutral, but that of the anion (A-1: (2)A(')) differs very much from those of the neutral and cation. The calculated vertical and adiabatic ionization potentials from the global minimum neutral (I-1) are 7.85 and 7.77 eV, respectively. The adiabatic electron affinity of the neutral I-1 and the electron detachment energy of the global minimum anion (A-1) are predicted to be 1.21 and 1.92 eV, respectively. The two-electron three-centered bond is widely observed in the present Si(3)H(2) neutral, cation, and anion. The contour plots of their localized molecular orbitals clearly show the existence of such nonclassical chemical bonds.  相似文献   

3.
The geometric structures and isomeric stabilities of various stationary points in CH2Si2 neutral, cation and anion are investigated at the coupled-cluster singles, doubles (triples) (CCSD(T)) level of theory. For the geometrical survey, the basis sets used are of the cc-pVTZ for the neutral and cation. The final energies are calculated by the use of the CCSD(T) level of theory with the aug-cc-pVTZ basis set at their optimized geometries. To the competitive two-anion isomers, the aug-cc-pVTZ basis sets are applied. The global minimum (N-1) of the CH2Si2 neutral has a quite different framework from those of the C3H2 (cyclopropenylidene) and Si3H2 (trisilacyclopropenylidene) neutrals. No competitive low-lying isomers are found in the CH2Si2 neutral. The attractive conformer (C-1) is predicted for the most stable cation, where its framework is quite different from that of the neutral N-1. Both H atoms are connected to the same C atom, but each C–H bond length is different from each other. Two competitive anion isomers with positive (real) electron affinities are predicted. The framework of the most stable anion A-1 is quite similar to that of the cation C-1, whereas both H atoms are equally connected to the same C atom. The framework of the anion isomer A-2 is the same as that in the neutral N-1. The vertical and adiabatic ionization potentials from the most stable neutral N-1 are 9.02 and 8.71 eV, respectively. The adiabatic electron affinity of the lowest lying isomer N-1 is only 0.43 eV and the vertical electron detachment energy form the global minimum anion (A-1) is 2.02 eV. The multi-centered Si–H–Si bonds are found in the neutral, cation, and anion.  相似文献   

4.
The geometrical structures of the C3H3 anion are surveyed at the coupled-cluster doubles (CCD) level of theory with the aug-cc-pVDZ basis set. To clarify the CCD geometries, the stable two isomers -- propynl-l-yl 1 and allenyl 2 anions -- are further optimized at the coupled-cluster singles, doubles (triples) (CCSD(T)) level of theory both with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The final energies are calculated at the CCSD(T) and the complete active space self-consistent field (CASSCF) multi-reference internally contracted CI (MRCI) levels of theory with the aug-cc-pVTZ basis set. At the MRCI level of theory including both the corrections due to the cluster energies (MRCI+Q) and the zero-point vibrational energies, the allenyl anion 2 is about 1.3 kcal mol−1 lower in energy than the propynl-l-yl anion 1. These results contrast with the previous theoretical estimates, where the propynl-l-yl anion 1 is 2-3 kcal mol−1 lower in energy than the allenyl anion 2. The activation energies of the intramolecular hydrogen transfer in the 1 → 2 conversion reactions are 63.5 kcal mol−1 at the MRCI+Q level of theory with the aug-cc-pVTZ basis set including the zero-point energy corrections. The adiabatic electron affinity of the planer propargyl (H2CCCH) radical, which is the global minimum of the C3H3 radical, is calculated to be 0.976 eV (after correction for the zero-point energy changes) at the CCSD(T) level of theory with the aug-cc-pVTZ basis set. The present electron affinity is in fairly good agreement with the experimental one (0.893 eV) observed by Oakes and Ellison.  相似文献   

5.
High-level ab initio molecular-orbital methods have been employed to determine the relative stability among four neutral and anionic B20 isomers, particularly the double-ring tubular isomer versus three low-lying planar isomers. Calculations with the fourth-order Moller-Plessset perturbation theory [MP4(SDQ)] and Dunning's correlation consistent polarized valence triple zeta basis set as well as with the coupled-cluster method including single, double, and noniteratively perturbative triple excitations and the 6-311G(d) basis set show that the double-ring tubular isomer is appreciably lower in energy than the three planar isomers and is thus likely the global minimum of neutral B20 cluster. In contrast, calculations with the MP4(SDQ) level of theory and 6-311+G(d) basis set show that the double-ring anion isomer is appreciably higher in energy than two of the three planar isomers. In addition, the temperature effects on the relative stability of both 10B20- and 11B20- anion isomers are examined using the density-functional theory. It is found that the three planar anion isomers become increasingly more stable than the double-ring isomer with increasing the temperature. These results are consistent with the previous conclusion based on a joint experimental/simulated anion photoelectron spectroscopy study [B. Kiran et al., Proc. Natl. Acad. Sci. U.S.A. 102, 961 (2005)], that is, the double-ring anion isomer is notably absent from the experimental spectra. The high stability of the double-ring neutral isomer of B20 can be attributed in part to the strong aromaticity as characterized by its large negative nucleus-independent chemical shift. The high-level ab initio calculations suggest that the planar-to-tubular structural transition starts at B20 for neutral clusters but should occur beyond the size of B20- for the anion clusters.  相似文献   

6.
The structures and relative stabilities of 15 S3O2 isomers have been investigated by G3X(MP2), CCSD(T)/aug-cc-pVTZ and MRCI/CASSCF calculations. The global energy minimum is a three-membered sulfur ring with two adjacent sulfoxide groups in a trans conformation, i.e. a vic-disulfoxide of C2 symmetry. The SS bond lengths are 2.136 (2x) and 2.354 angstroms at the CCSD(T)/cc-pVTZ level of theory. There is a strong interaction between the pi* orbitals of the two S=O moieties both in the trans and in the almost degenerate cis conformer. The corresponding chain-like singlet and triplet isomers of connectivity OSSSO lie close in energy (ca. 67 kJ mol(-1)) while five-membered and branched four-membered rings are significantly less stable. The structure of S3O2 is in contrast to that of the isoelectronic analogue S5, which exists as a five-membered twisted heterocycle.  相似文献   

7.
Highly correlated ab initio coupled-cluster theories (e.g., CCSD(T), CCSDT) were applied on the ground electronic states of Si(2)H(3) and Si(2)H(4), with substantive basis sets. A total of 10 isomers, which include mono- and dibridged structures, were investigated. Scalar relativistic corrections and zero-point vibrational energy corrections were included to predict reliable energetics. For Si(2)H(3), we predict an unanticipated monobridged H(2)Si-H-Si-like structure (C(s), (2)A') to be the lowest energy isomer, in constrast to previous studies which concluded that either H(3)Si-Si (C(s), (2)A') or near-planar H(2)Si-SiH (C(1), (2)A) is the global minimum. Our results confirm that the disilene isomer, H(2)Si-SiH(2), is the lowest energy isomer for Si(2)H(4) and that it has a trans-bent structure (C(2)(h), (1)A(g)). In addition to the much studied silylsilylene, H(3)Si-SiH, we also find that a new monobridged isomer H(2)Si-H-SiH (C(1), (1)A, designated 2c) is a minimum on the potential energy surface and that it has comparable stability; both isomers are predicted to lie about 7 kcal/mol above disilene. By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, the rotational spectrum of this novel Si(2)H(4) isomer has recently been measured in the laboratory, as has that of the planar H(2)Si-SiH radical. Harmonic vibrational frequencies as well as infrared intensities of all 10 isomers were determined at the cc-pVTZ CCSD(T) level.  相似文献   

8.
At the level of MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets supplemented with diffuse bond functions, the authors searched the potential energy surfaces of (HF)(n) (-) (n=3-6). In accordance with the literature, they found that the symmetrically solvated-electron anion (3(FH){e}) possesses the largest vertical detachment energy (VDE), while the dipole-bound anion ((FH)(3){e}) is the lowest isomer in energy for (HF)(3) (-). Their calculations demonstrated that, with the increase of the cluster size, the asymmetric (FH)(a){e}(HF)(b) cluster is stabilized with a simultaneously increased VDE. Thus they predicted that, for (HF)(6) (-), the (FH)(4){e}(HF)(2) cluster is both kinetically and thermodynamically most stable, possessing the largest VDE and being the global minimum at the same time.  相似文献   

9.
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of CH(3)O+H-->CH(2)O+H(2). The unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional with Dunning's correlation consistent polarized valence double-zeta basis set, the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set, and the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set methods were employed to optimize the structures and to calculate frequencies for all stationary points. Minimum energy paths were obtained by the unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional and the unrestricted quadratic configuration interaction calculation including single and double substitutions with the same Dunning's correlation consistent polarized valence double-zeta basis set levels of theory. No barrier is found at the unrestricted Becke's half-and-half hybrid functional using the Lee-Yang-Parr correlation functional with Dunning's correlation consistent polarized valence double-zeta basis set level of theory in contrast to a small barrier of 1.43 kcal mol(-1) at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set level of theory. In particular, the barrier vanishes as the energies along the minimum energy path MEP are refined at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set level of theory. Smaller barriers of 0.47 and 0.17 kcal mol(-1) were obtained at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set and the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set based on the geometries at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence triple-zeta basis set levels of theory, respectively. The forward rate constants are evaluated with the canonical variational transition state theory in the temperature range of 300-2500 K. The calculated forward rate constants at the unrestricted quadratic configuration interaction calculation including single and double substitutions with a triples contribution with Dunning's correlation consistent polarized valence triple-zeta basis set based on the geometries at the unrestricted quadratic configuration interaction calculation including single and double substitutions with Dunning's correlation consistent polarized valence double-zeta basis set level of theory are in good agreement with the available experimental data. The kinetic isotope effects are estimated.  相似文献   

10.
The present work aims to establish the utility of dispersion-corrected density functional theory for potential energy curves of the benzene dimer, a problem that has received significant attention for a long time. The interaction energies of parallel-stacked, T-shaped and parallel-displaced benzene dimer configurations have been evaluated using both dispersion- and normal gradient-corrected Perdew-Burke-Ernzerhof functionals along with Dunning's augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis functions and compared with explicit correlation methods. The potential energy curves for the parallel-stacked and parallel-displaced benzene dimers are in excellent agreement with highly accurate coupled cluster (CCSD(T)) results, while for the T-shaped benzene dimer the dispersion-corrected results show a distinct deviation, being closer in that case to the MP2 level of results. The overestimation of interaction energy in the T-shaped dimer may be attributed to the presence of a permanent dipole moment in this configuration and indicates a structural dependence of the dispersion-corrected density functional method.  相似文献   

11.
The structures, energetics, spectroscopies, and stabilities of the doublet NC(2)O radical are explored at density functional theory and ab initio levels. Nine minimum isomers are located connected by 22 interconversion transition states. At the CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE level, the lowest-lying isomer is bent NCCO 1 (0.0 kcal/mol) with (2)A' state followed by bent isomer CNCO 2 (16.7). Two isomers (1 and 2) and another high-lying species CCNO 4 (99.4) with bent structure are considerably stabilized by a barrier of at least 20 kcal/mol. All of the three isomers should be experimentally or astrophysically observable. This result is consistent with their indication of neutralization-reionization mass spectrometry experiments. Also, the calculated spectroscopic properties and bond distances of known NCCO 1 are consistent with recent experimental observations and theoretical studies. The bonding natures of the isomers 1, 2, and 4 are analyzed. Their molecular properties including the heats of formation, adiabatic ionization potentials, and adiabatic electronic affinities are calculated at the higher levels G3//B3LYP, G3(MP2)//B3LYP, QCISD, and CCSD(T) (single-point). Possible formation strategies of the isomers 1, 2, and 4 in laboratory and space are also discussed in detail.  相似文献   

12.
The cation [Si,C,O]+ has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected [Si,C,O]+, generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si(+)-CO, Si(+)-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated [Si,C,O]+ reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si(+)-CO isomer. CCSD(T)@B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states. The results suggest that both Si(+)-CO and Si(+)-OC isomers are feasible; however, the global minimum is 2 pi SiCO+. Isomeric 2 pi SiOC+ is 12.1 kcal mol-1 less stable than 2 pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si-OC isomer (3A") is bound by only 1.5 kcal mol-1. We attribute most, if not all, of the recovery signal in the +NR+ experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si(+)-(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground state bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.  相似文献   

13.
The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.  相似文献   

14.
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar-CH(3)OH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH(3)OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar-C, Ar-O, Ar-H(C), and Ar-H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol(-1), and adding an additional r(-n) term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar-CH(3)OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol(-1) with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol(-1) smaller than this value. The well depths of the other two minima are within 0.16 kcal mol(-1) of the global minimum. The analytic Ar-CH(3)OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol(-1) of the ab initio values. Combining this Ar-CH(3)OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.  相似文献   

15.
Ab initio coupled cluster calculations with single and double substitutions and a perturbative treatment of connected triple excitations [CCSD(T)] with the augmented correlation-consistent polarized valence triple-zeta aug-cc-pVTZ basis at 51 816 geometries provide a six-dimensional potential-energy surface for the electronic ground state of NH3. At 3814 selected geometries, CBS+ energies are obtained by extrapolating the CCSD(T) results for the aug-cc-pVXZ(X=T,Q,5) basis sets to the complete basis set (CBS) limit and adding corrections for core-valence correlation and relativistic effects. CBS** ab initio energies are generated at 51,816 geometries by an empirical extrapolation of the CCSD(T)/aug-cc-pVTZ results to the CBS+ limit. They cover the energy region up to 20,000 cm-1 above equilibrium. Parametrized analytical functions are fitted through the ab initio points. For these analytical surfaces, vibrational term values and transition moments are calculated by means of a variational program employing a kinetic-energy operator expressed in the Eckart-Sayvetz frame. Comparisons against experiment are used to assess the quality of the generated potential-energy surfaces. A "spectroscopic" potential-energy surface of NH3 is determined by a slight empirical adjustment of the ab initio potential to the experimental vibrational term values. Variational calculations on this refined surface yield rms deviations from experiment of 0.8 cm-1 for 24 inversion splittings and 0.4 (3.0) cm-1 for 34 (51) vibrational term values up to 6100 (10,300) cm-1.  相似文献   

16.
We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were used. We found eight low energy glycine conformers, where the heavy atoms in three have a planar backbone, and four low energy methylcarbamic acid conformers all with non-planar backbones. Interestingly at all levels of theory, we found that the most stable methylcarbamic acid conformer is significantly lower in energy than the lowest energy glycine conformer. The MP2 level and single point CCSD(T) calculations show the lowest energy methylcarbamic acid conformer to be between 31 to 37 kJ mol(-1) lower in energy than the lowest energy glycine conformer. These calculations suggest that methylcarbamic acid might serve as a precursor to glycine formation in the Interstellar Medium (ISM). We also report the theoretical harmonic vibrational frequencies, infrared intensities, moment of inertia, rotational constants and dipole moments for all of the conformers. In order to understand how glycine or methylcarbamic acid might be formed in the ISM, larger calculations which model glycine or its isomer interacting with several surrounding molecules, such as water, are needed. We demonstrate that B3LYP method should provide a reliable and computationally practical approach to modeling these larger systems.  相似文献   

17.
Neutral and anionic 13-atom aluminum clusters are studied with high-level, fully ab initio methods: second-order perturbation theory (MP2) and coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)). Energies and vibrational frequencies are reported for icosahedral and decahedral isomers, and are compared with density functional theory results. At the MP2 level of theory, with all of the basis sets employed, the icosahedral structure is energetically favored over the decahedral structure for both the neutral and anionic Al(13) clusters. Hessian calculations imply that only the icosahedral structures are potential energy minima. The CCSD(T)/aug-cc-pVTZ adiabatic electron affinity of Al(13) is found to be 3.57 eV, in excellent agreement with experiment.  相似文献   

18.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

19.
The structures and energetics of Li(6) (+), Li(6) (-) and three isomers of Li(6) are investigated using the coupled-cluster singles, doubles and perturbative triples [CCSD(T)] method with valence and core-valence correlation consistent basis sets of double- to quadruple-zeta quality (cc-pVXZ and cc-pCVXZ, where X=D-Q). These results are compared with qualitatively different predictions by less reliable methods. Our results conclusively show that the D(4h) isomer is the global minimum structure for Li(6). It is energetically favored over the C(5v) and D(3h) structures by about 5.1 and 7.1 kcal mol(-1), respectively, after the inclusion of the zero-point vibrational energy (ZPVE) correction. Our most accurate total atomization energies are 123.2, 117.6, and 115.7 kcal mol(-1) for the D(4h), C(5v), and D(3h) isomers, respectively. Comparison of experimental optical absorption spectra with our computed electronic spectra also indicate that the D(4h) isomer is indeed the most stable structure. The cation, anion, and some higher spin states are investigated using the less expensive cc-pCVDZ basis set. Adiabatic ionization energies and electron affinities are reported and compared with experimental values. Predictions of molecular properties are found to be sensitive to the basis set used and to the treatment of electron correlation.  相似文献   

20.
High-level electronic structure calculations have been used to map out the relevant portions of the potential energy surfaces for the release of H2 from dimers of ammonia borane, BH3NH3 (AB). Using the correlation-consistent aug-cc-pVTZ basis set at the second-order perturbation MP2 level, geometries of stationary points were optimized. Relative energies were computed at these points using coupled-cluster CCSD(T) theory with the correlation-consistent basis sets at least up to the aug-cc-pVTZ level and in some cases extrapolated to the complete basis set limit. The results show that there are a number of possible dimers involving different types of hydrogen-bonded interactions. The most stable gaseous phase (AB)2 dimer results from a head-to-tail cyclic conformation and is stabilized by 14.0 kcal/mol with respect to two AB monomers. (AB)2 can generate one or two H2 molecules via several direct pathways with energy barriers ranging from 44 to 50 kcal/mol. The diammoniate of diborane ion pair isomer, [BH4-][NH3BH2NH3+] (DADB), is 10.6 kcal/mol less stable than (AB)2 and can be formed from two AB monomers by overcoming an energy barrier of approximately 26 kcal/mol. DADB can also be generated from successive additions of two NH3 molecules to B2H6 and from condensation of AB with separated BH3 and NH3 molecules. The pathway for H2 elimination from DADB is characterized by a smaller energy barrier of 20.1 kcal/mol. The alternative ion pair [NH4+][BH3NH2BH3-] is calculated to be 16.4 kcal/mol above (AB)2 and undergoes H2 release with an energy barrier of 17.7 kcal/mol. H2 elimination from both ion pair isomers yields the chain BH3NH2BH2NH3 as product. Our results suggest that the neutral dimer will play a minor role in the release of H2 from ammonia borane, with a dominant role from the ion pairs as observed experimentally in ionic liquids and the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号