首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca+HCl(upsilon,j) reactive collisions were studied for different rovibrational states of the HCl reactant using wave-packet calculations in reactant Jacobi coordinates. A recently proposed potential-energy surface was used with a barrier of approximately 0.4 eV followed by a deep well. The possibility of an insertion mechanism due to this last well has been analyzed and it was found that once the wave packet passes over the barrier most of it goes directly to CaCl+H products, which shows that the reaction dynamics is essentially direct. It was also found that there is no significant change in the reaction efficiency as a function of the initial HCl rovibrational state, because CaHCl at the barrier has an only little elongated HCl bond. Near the threshold for reaction with HCl(upsilon=0), however, the reaction shows significant steric effects for j > 0. In a complementary study, the infrared excitation from the Ca-HCl van der Waals well was simulated. The spectrum thus obtained shows several series of resonances which correspond to quasibound states correlating to excited HCl(upsilon) vibrations. The Ca-HCl binding energies of these quasibound states increase dramatically with upsilon, from 75 to 650 cm(-1), because the wave function spreads increasingly over larger HCl bond lengths. Thus it explores the region of the barrier saddle point and the deep insertion well. Although also the charge-transfer contribution increases with upsilon, the reaction probability for resonances of the upsilon=2 manifold, which are well above the reaction threshold, is still negligible. This explains the relatively long lifetimes of these upsilon=2 resonances. The reaction probability becomes significant at upsilon=3. Our simulations have shown that an experimental study of this type will allow a gradual spectroscopic probing of the barrier for the reaction.  相似文献   

2.
Explicitly correlated averaged coupled-pair functional methods have been used to compute the ground-state Born-Oppenheimer potential energy surface for the F + HH' --> FH + H' reaction at the F + HH' and FH + H' asymptotes, the F...HH', and FH...H van der Waals wells, the reaction transition state, and at points along the intrinsic reaction coordinate connecting all of these stationary points. To these energies, corrections for spin-orbit coupling and scalar relativistic effects were added to produce total electronic energies whose accuracy is demonstrated to be very high (e.g., 0.1 kcal mol(-1)). The final data are used to refine the two-body parts of the currently best three-dimensional potential energy surface for this reaction, to predict several spectroscopic parameters of the species involved, and to offer accurate estimates of the title reaction's exothermicity (32.0 kcal mol(-1)) and activation barrier (1.8 kcal mol(-1)) as well as the geometry of the transition state.  相似文献   

3.
The two asymptotically degenerate potential energy surfaces of argon interacting with the X (2)E(1g) ground state benzene(+) cation were calculated ab initio from the interaction energy of the neutral Ar-benzene complex given by Koch et al. [J. Chem. Phys. 111, 198 (1999)] and the difference of the geometry-dependent ionization energies of the complex and the benzene monomer computed by the outer valence Green's function method. Coinciding minima in the two potential surfaces of the ionic complex occur for Ar on the C(6v) symmetry axis of benzene(+) (the z axis) at z(e)=3.506 A. The binding energy D(e) of 520 cm(-1) is only 34% larger than the value for the neutral Ar-benzene complex. The higher one of the two surfaces is similar in shape to the neutral Ar-benzene potential, the lower potential is much flatter in the (x,y) bend direction. Nonadiabatic (Jahn-Teller) coupling was taken into account by transformation of the two adiabatic potentials to a two-by-two matrix of diabatic potentials. This transformation is based on the assumption that the adiabatic states of the Ar-benzene(+) complex geometrically follow the Ar atom. Ab initio calculations of the nonadiabatic coupling matrix element between the adiabatic states with the two-state-averaged CAS-SCF(5,6) method confirmed the validity of this assumption. The bound vibronic states of both Ar-C(6)H(6) (+) and Ar-C(6)D(6) (+) were computed with this two-state diabatic model in a basis of three-dimensional harmonic oscillator functions for the van der Waals modes. The binding energy D(0)=480 cm(-1) of the perdeuterated complex agrees well with the experimental upper bound of 485 cm(-1). The ground and excited vibronic levels and wave functions were used, with a simple model dipole function, to generate a theoretical far-infrared spectrum. Strong absorption lines were found at 10.1 cm(-1) (bend) and 47.9 cm(-1) (stretch) that agree well with measurements. The unusually low bend frequency is related to the flatness of the lower adiabatic potential in the (x,y) direction. The van der Waals bend mode of e(1) symmetry is quadratically Jahn-Teller active and shows a large splitting, with vibronic levels of A(1), E(2), and A(2) symmetry at 1.3, 10.1, and 50.2 cm(-1). The level at 1.3 cm(-1) leads to a strong absorption line as well, which could not be measured because it is too close to the monomer line. The level at 50.2 cm(-1) gives rise to weaker absorption. Several other weak lines in the frequency range of 10 to 60 cm(-1) were found.  相似文献   

4.
We have, in infrared reflection absorption measurements, observed narrow dipole active absorption lines associated with the fundamental internal vibrational transitions of N(2) and O(2) physisorbed at 30 K on the chemically inert Pt(111)(1 x 1)H surface. Such transitions are forbidden for free homonuclear molecules and become dipole active at a metal surface due to polarization induced surface dipole moments. The measurements show that the internal stretch vibration frequencies are lowered by 7-8 cm(-1) relative to the gas phase values. The measured static and dynamic dipole moments are in the ranges of 0.06-0.07 and 0.001-0.002 D, respectively. We find that good estimates of the induced dynamic as well as the static dipole moments can in general be obtained from a van der Waals model but that the ratios of the measured static and dynamic moments indicates a need for a refinement of the dipole moment function.  相似文献   

5.
We study scattering resonances in the F+HD-->HF+D reaction using a new method for direct evaluation of the lifetime Q-matrix [Aquilanti et al., J. Chem. Phys. 2005, 123, 054314]. We show that most of the resonances are due to van der Waals states in the entrance and exit reaction channels. The metastable states observed in the product reaction channel are assigned by calculating the energy levels and wave functions of the HF...D van der Waals complex. The behavior of resonance energies, widths, and decay branching ratios as functions of total angular momentum is analyzed. The effect of isotopic substitution on resonance energies and lifetimes is elucidated by comparison with previous results for the F+H2 reaction. It is demonstrated that HF(v'=3) products near threshold are formed by decay of the narrow resonances supported by van der Waals wells in the exit channel. State-to-state differential cross sections in the HF(v'=3) channel exhibit characteristic forward-backward peaks due to the formation of a long-lived metastable complex. The role of the exit-channel resonances in the interpretation of molecular beam experiments is discussed.  相似文献   

6.
The H2-NH(X) van der Waals complex has been examined using ab initio theory and detected via fluorescence excitation spectroscopy of the A(3)Pi-X(3)Sigma(-) transition. Electronic structure calculations show that the minimum energy geometry corresponds to collinear H2-NH(X), with a well depth of D(e)=116 cm(-1). The potential-energy surface supports a secondary minimum for a T-shaped geometry, where the H atom of NH points towards the middle of the H2 bond (C(2v) point group). For this geometry the well depth is 73 cm(-1). The laser excitation spectra for the complex show transitions to the H2+NH(A) dissociative continuum. The onset of the continuum establishes a binding energy of D(0)=32+/-2 cm(-1) for H2-NH(X). The fluorescence from bound levels of H2-NH(A) was not detected, most probably due to the rapid reactive decay [H2-NH(A)-->H+NH2]. The complex appears to be a promising candidate for studies of the photoinitiated H2+NH abstraction reaction under conditions were the reactants are prealigned by the van der Waals forces.  相似文献   

7.
8.
9.
The van der Waals vibrational states and the structure of the vibronic spectrum of s-tetrazine-argon complex have been studied by the ab initio methods. The potential-energy surface of the ground S(0) electronic state of the complex has been constructed by fitting the analytical many-body expansion to a large set of the interaction energy values computed using the second-order M?ller-Plesset perturbation theory combined with the standard aug-cc-pVDZ basis set. The equilibrium structure of the complex found is that with argon located above the tetrazine ring at a distance of 3.394 A. The calculated dissociation energy of 354 cm(-1) is compatible with the experiment. The van der Waals energy spectrum calculated from the potential-energy surface is explained analyzing a correlation with a simpler energy spectrum of benzene-argon. A new assignment of the S(0)-S(1) vibronic spectrum is proposed on the basis of the rigorous selection rules, vibrational energy levels in S(0) and S(1) states and vibronic transition intensities calculated from the electronic transition dipole moment surfaces.  相似文献   

10.
The technique of two-dimensional laser induced fluorescence (2D-LIF) spectroscopy has been used to observe the van der Waals complexes fluorobenzene-Ar and fluorobenzene-Ar(2) in the region of their S(1)-S(0) electronic origins. The 2D-LIF spectral images reveal a number of features assigned to the van der Waals vibrations in S(0) and S(1). An advantage of 2D-LIF spectroscopy is that the LIF spectrum associated with a particular species may be extracted from an image. This is illustrated for fluorobenzene-Ar. The S(1) van der Waals modes observed in this spectrum are consistent with previous observations using mass resolved resonance enhanced multiphoton ionisation techniques. For S(0), the two bending modes previously observed using a Raman technique were observed along with three new levels. These agree exceptionally well with ab initio calculations. The Fermi resonance between the stretch and bend overtone has been analysed in both the S(0) and S(1) states, revealing that the coupling is stronger in S(0) than in S(1). For fluorobenzene-Ar(2) the 2D-LIF spectral image reveals the S(0) symmetric stretch van der Waals vibration to be 35.0 cm(-1), closely matching the value predicted based on the fluorobenzene-Ar van der Waals stretch frequency. Rotational band contour analysis has been performed on the fluorobenzene-Ar 0(0)(0) transition to yield a set of S(1) rotational constants A' = 0.05871 ± 0.00014 cm(-1), B' = 0.03803 ± 0.00010 cm(-1), and C' = 0.03103 ± 0.00003 cm(-1). The rotational constants imply that in the S(1) 0(0) level the Ar is on average 3.488 ? from the fluorobenzene centre of mass and displaced from it towards the centre of the ring at an angle of ~6° to the normal. The rotational contour for fluorobenzene-Ar(2) was predicted using rotational constants calculated on the basis of the fluorobenzene-Ar geometry and compared with the experimental contour. The comparison is poor which, while due in part to expected saturation effects, suggests the presence of another band lying beneath the contour.  相似文献   

11.
The H+LiF(X (1)sigma(+),upsilon=0-2,j=0)-->HF(X (1)sigma(+),upsilon',j')+Li(2S) bimolecular process is investigated by means of quantum scattering calculations on the chemically accurate X 2A' LiHF potential energy surface of Aguado et al. [A. Aguado, M. Paniagua, C. Sanz, and J. Roncero, J. Chem. Phys. 119, 10088 (2003)]. Calculations have been performed for zero total angular momentum for translational energies from 10(-7) to 10(-1) eV. Initial-state selected reaction probabilities and cross sections are characterized by resonances originating from the decay of metastable states of the H...F-Li and Li...F-H van der Waals complexes. Extensive assignment of the resonances has been carried out by performing quasibound states calculations in the entrance and exit channel wells. Chemical reactivity is found to be significantly enhanced by vibrational excitation at low temperatures, although reactivity appears much less favorable than nonreactive processes due to the inefficient tunneling of the relatively heavy fluorine atom strongly bound in van der Waals complexes.  相似文献   

12.
13.
We report an analytical ab initio three degrees of freedom (3D) spin-orbit-correction surface for the entrance channel of the F + methane reaction obtained by fitting the differences between the spin-orbit (SO) and non-relativistic electronic ground state energies computed at the MRCI+Q/aug-cc-pVTZ level of theory. The 3D model surface is given in terms of the distance, R(C-F), and relative orientation, Euler angles ? and θ, of the reactants treating CH(4) as a rigid rotor. The full-dimensional (12D) "hybrid" SO-corrected potential energy surface (PES) is obtained from the 3D SO-correction surface and a 12D non-SO PES. The SO interaction has a significant effect in the entrance-channel van der Waals region, whereas the effect on the energy at the early saddle point is only ~5% of that at the reactant asymptote; thus, the SO correction increases the barrier height by ~122 cm(-1). The 12D quasiclassical trajectory calculations for the F + CH(4) and F + CHD(3) reactions show that the SO effects decrease the cross sections by a factor of 2-4 at low collision energies and the effects are less significant as the collision energy increases. The inclusion of the SO correction in the PES does not change the product state distributions.  相似文献   

14.
Counterpoise (CP)-corrected geometry optimization and frequency calculation have been performed at MP2(FC) level of theory for the linear van der Waals complex FH...Ne. With the basis set 6-311++(2df, 3pd), CP-corrected frequency shift of nu(FH) is -0.4504 cm(-1), which agrees well with the experimental red shift of 0.4722 cm(-1).  相似文献   

15.
The entrance channel potentials of the prototypical polyatomic reaction family X + CH(4) → HX + CH(3) (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X(-)-CH(4) anion complex. For F-CH(4), a spin-orbit splitting (~1310 cm(-1)) much larger than that of the F atom (404 cm(-1)) was observed, in good agreement with theory. This showed that in the case of the F-CH(4) system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH(4) reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.  相似文献   

16.
Here we describe a method to create gels where the gel point is decoupled from gel elastic properties. Working with charge stabilized polystyrene latex particles with diameters, D, of 508-625 nm at ionic strengths of 0.1-1 M, the gel volume fraction is varied from 0.10-0.35 through the addition of less than monolayer coverage of hexaethylene glycol monododecyl ether (C6E12). At each surfactant concentration, the gel volume fraction depends on the background ionic strength. The changes in gel point with surfactant concentration suggest the strength of interparticle attraction decreases with increasing surfactant concentration. These changes are not reflected in the gel moduli, which are independent of surfactant concentration and ionic strength. We propose a model to describe this behavior based on gelation due to localization in a shallow truncated van der Waals minimum produced by the surfactant acting as a steric stabilizing layer. The surfactant remains mobile on the surface. Below the gel volume fraction, the time particles spend in the truncated well are not sufficient for the surfactant to be displaced such that the particles can only sample the shallow well. Above the gel volume fraction, particles are localized in the truncated van der Waals minima for sufficient periods of time to displace the surfactant layers with the result being that the particles fall into a primary van der Waals minimum. The result is gel points sensitive to surfactant concentration but moduli that are independent of the gel volume fraction.  相似文献   

17.
Evaluation of intermolecular distance and binding energy (BE) of van der Waals complex/cluster at ab initio level of theory is computationally demanding when many monomers are involved. Starting from MP2 energy, we reached a two-step evaluation method of BE of van der Waals complex/cluster through reasonable approximations; BE = BE(HF) + sum Mi> Mj{BE (Mi- Mj)(MP2 or MP2.5) - BE(Mi-Mj)(HF)} where HF represents the Hartree-Fock calculation, Mi, Mj, etc. are interacting monomers, and MP2.5 represents the arithmetic mean of MP2 and MP3. The first term is the usual BE of the complex/cluster evaluated at the HF level. The second term is the sum of the difference in two-body BE between the correlated and HF levels of theory. This equation was applied to various van der Waals complexes consisting of up-to-four monomers at MP2 and MP2.5 levels of theory. We found that this method is capable of providing precise estimate of the BE and reproducing well the potential energy surface of van der Waals complexes/clusters; the maximum error of the BE is less than 1 kcal/mol and 1% in most cases except for several limited cases. The origins of error in these cases are discussed in detail.  相似文献   

18.
A single-sheeted double many-body expansion (DMBE) potential energy surface is reported for the 1 2 A′′ state of NH2. To approximate its true multi-sheeted nature, a novel switching function that imposes the correct behavior at the H2(X 1Σ g +)+ N(2 D) and NH(X 3Σ-) + H(2 S) dissociation limits has been suggested. The new DMBE form is shown to fit with high accuracy an extensive set of new ab initio points (calculated at the multi-reference configuration interaction level using the full valence complete active space as reference and aug-cc-pVQZ and aug-cc-pV5Z basis sets) that have been semiempirically corrected at the valence regions by scaling the n-body dynamical correlation terms such as to account for the finite basis set size and truncated configuration interaction expansion. A detailed study of the N(2 D) ... H2(X 1Σ g +) van der Waals region has also been carried out. These calculations predict a nearly free rigid-rotor with two shallow van der Waals wells of C 2v and C v symmetries. Such a result contrasts with previous cc-pVTZ calculations which predict a single T-shaped van der Waals structure. Except in the vicinity of the crossing seam, which is replaced by an avoided intersection, the fit shows the correct physical behavior over the entire configurational space. The topographical features of the new DMBE potential energy surface are examined in detail and compared with those of other potential functions available in the literature. Amongst such features, we highlight the barrier for linearization (11,802 cm-1) which is found to overestimate the most recent empirical spectroscopic estimate by only 28 cm-1. Additionally, the T-shaped N(2 D) ... H2 van der Waals minimum is predicted to have a well depth of 90 cm-1, being 11 cm-1 deeper than the C v minimum. The title DMBE form is therefore recommendable for dynamics studies of both non-reactive and reactive N(2 D)+H2 collisions.  相似文献   

19.
Interaction potentials for CaCl(X 2Σ+)-Ar and KCl(X 1Σ+)-Ar have been determined. They include a Gordon-Kim electron-gas repulsive part smoothly joined to the long-range van der Waals potential. The van der waals potential for KClAr was taken from Meyer and Toennies. For CaClAr, the necessary molecular parameter were estimated from the Rittner model, which predicts both the dipole and quadrupole moments fairly accurately. The CaClAr interaction potential is quite different from that of KClAr. Due to the outer 4s electron on the Ca+ ion. the CaClAr potential exhibits a deep minimum in the odd-order Legendre terms which is expected to have a large effect on the cross sections for collisional rotational excitation. The KClAr potential determined here also shows significant differences in the repulsive and well regions from that predicted by Meyer and Toennies using a site-site model for the repulsive contribution.  相似文献   

20.
The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号