首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the electronic structure of a variety of single wall carbon nanotubes and report density of states obtained with the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation and hybrid PBE0 approximation of density functional theory using Gaussian orbitals and periodic boundary conditions. PBE gives very good results for metallic tubes but the addition of a portion of exact exchange in the hybrid PBE0 functional worsens the agreement between experiment and theory. On the other hand, the PBE0 hybrid significantly improves the theoretical predictions (compared to PBE) for semiconducting tubes.  相似文献   

2.
The performance of the time-dependent density functional theory (TDDFT) approach has been evaluated for the electronic spectrum of the UO(2)(2+), NUO(+) and NUN molecules. Different exchange-correlation functionals (LDA, PBE, BLYP, B3LYP, PBE0, M06, M06-L, M06-2X, CAM-B3LYP) and the SAOP model potential have been investigated, as has the relative importance of the adiabatic local density approximation (ALDA) to the exchange-correlation kernel. The vertical excitation energies have been compared with reference data obtained using accurate wave-function theory (WFT) methods.  相似文献   

3.
The electronic spectrum of the CUO molecule was investigated with the IHFSCC-SD (intermediate Hamiltonian Fock-space coupled cluster with singles and doubles) method and with TD-DFT (time-dependent density functional theory) employing the PBE and PBE0 exchange-correlation functionals. The importance of both spin-orbit coupling and correlation effects on the low-lying excited-states of this molecule are analyzed and discussed. Noble gas matrix effects on the energy ordering and vibrational frequencies of the lowest electronic states of the CUO molecule were investigated with density functional theory (DFT) and TD-DFT in a supermolecular as well as a frozen density embedding (FDE) subsystem approach. This data is used to test the suitability of the FDE approach to model the influence of different matrices on the vertical electronic transitions of this molecule. The most suitable potential was chosen to perform relativistic wave function theory in density functional theory calculations to study the vertical electronic spectra of the CUO and CUONg(4) with the IHFSCC-SD method.  相似文献   

4.
The electronic structure of iron phthalocyanine (FePc) in the valence region was examined within a joint theoretical-experimental collaboration. Particular emphasis was placed on the determination of the energy position of the Fe 3d levels in proximity of the highest occupied molecular orbital (HOMO). Photoelectron spectroscopy (PES) measurements were performed on FePc in gas phase at several photon energies in the interval between 21 and 150 eV. Significant variations of the relative intensities were observed, indicating a different elemental and atomic orbital composition of the highest lying spectral features. The electronic structure of a single FePc molecule was first computed by quantum chemical calculations by means of density functional theory (DFT). The hybrid Becke 3-parameter, Lee, Yang and Parr (B3LYP) functional and the semilocal 1996 functional of Perdew, Burke and Ernzerhof (PBE) of the generalized gradient approximation (GGA-)type, exchange-correlation functionals were used. The DFT/B3LYP calculations find that the HOMO is a doubly occupied π-type orbital formed by the carbon 2p electrons, and the HOMO-1 is a mixing of carbon 2p and iron 3d electrons. In contrast, the DFT/PBE calculations find an iron 3d contribution in the HOMO. The experimental photoelectron spectra of the valence band taken at different energies were simulated by means of the Gelius model, taking into account the atomic subshell photoionization cross sections. Moreover, calculations of the electronic structure of FePc using the GGA+U method were performed, where the strong correlations of the Fe 3d electronic states were incorporated through the Hubbard model. Through a comparison with our quantum chemical calculations we find that the best agreement with the experimental results is obtained for a U(eff) value of 5 eV.  相似文献   

5.
Local density approximation (LDA), several popular general gradient approximation (GGA), hybrid module based density functional theoretical methods: SVWN, BLYP, PBE, HCTH, B3LYP, PBE1PBE, B1LYP, and BHandHLYP, and some nonstandard hybrid methods are applied in geometry prediction for C60 and C70. HCTH with 3-21G basis set is found to be one of the best methods for fullerene structural prediction. In the predictions of relative stability of C50 isomers, PM3 is an efficient method in the first step for sorting out the most stable isomers. HCTH with 3-21G predicts very good geometries for C50, similar to the performance of B3LYP6-31G(d). The gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital from the predictions of all the density functional theory methods has the following descending order: E(gap)(half-and-half hybrid)>E(gap)(B3LYP)>E(gap)(HCTH)(GGA)>E(gap)(SVWN)(LDA).  相似文献   

6.
7.
Gradient-regulated connection (GRAC) is a generalized gradient approximation exchange density functional designed by combining the revPBE and PW91 exchange functionals to impose their behaviors in the slowly- and fast-varying density regions, respectively. Such a construction allows one single density functional to accurately estimate both covalent and weak interactions occurring in main-group-based molecular systems. For the first time, the assessment of the performance of the GRAC exchange functional is extended to the modeling of various metal bond energy and structure properties. This assessment shows that when GRAC is coupled with the Perdew, Burke, Ernzerhof (PBE) correlation, the resulting exchange-correlation density functional is an excellent alternative to global hybrids to model bond dissociation energy, atomic electronic excitation energy, and bond length structure properties of single-reference metal bonds. It also shows that coupling with the Tognetti, Cortona, Adamo (TCA) correlation constitutes a robust approach to tackle energy bond properties of organometallic complexes with multi-reference character.  相似文献   

8.
The performance of the M06 family of exchange-correlation potentials for describing the electronic structure and the Heisenberg magnetic coupling constant (J) is investigated using a set of representative open-shell systems involving two unpaired electrons. The set of molecular systems studied has well defined structures, and their magnetic coupling values are known experimentally. As a general trend, the M06 functional is about equally as accurate as B3LYP or PBE0. The performance of local functionals is important because of their economy and convenience for large-scale calculations; we find that M06-L local functional of the M06 family largely improves over the local spin density approximation and the generalized gradient approximation.  相似文献   

9.
通过密度泛函理论(DFT)的MPW3PBE泛函, 对萤火虫生物发光底物氧化荧光素及其衍生物进行了结构全优化. 计算了其电离能、 电子亲和势、 空穴抽取能、 电子抽取能、 空穴和电子重组能, 并评估了其空穴和电子传输能力. 采用含时密度泛函理论(TD-DFT)//MPW3PBE/6-31+G(d)方法计算了吸收光谱, 优化了最低单重态S1, 研究了其荧光光谱, 进而考察了具有较高发光效率的氧化荧光素作为有机发光二极管(OLED)材料的可能性. 计算结果表明, 氧化荧光素及其衍生物可以同时作为电子传输层和发光层材料.  相似文献   

10.
Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO(2), OCH(3), CH(3), CCl(3), and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can be predicted from its known electronic effect (whether it is sigma/pi donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than the experimental values, but good agreement is obtained after correcting for self-interaction and image charge effects.  相似文献   

11.
A comprehensive theoretical model was designed for two new flavanols that have been reported from Glycosmis pentaphylla, differing in the placement of α-pyrone ring. The density functional theory (DFT) approach was utilized for computing different properties of these compounds to validate the experimental findings and stereochemical assignments. Electronic properties, geometric parameters, frontier molecular orbitals (FMOs), molecular electrostatic potential (MESP), and natural bond orbital analysis were performed for the first time at the PBE0-D3BJ/def2-TZVP level of theory for the compounds under study. The simulated vibrational frequencies for compounds 1 and 2 were computed and compared with the experimental results. nuclear magnetic resonance (NMR) (1H and 13C) chemical shift values were computed at the PBE0-D3BJ/def2-TZVP/SMDDMSO level of theory and showed a very good agreement with the experimental results for both the compounds. The electronic circular dichroism (ECD) and ultraviolet–visible (UV) spectra for both the compounds were obtained using time-dependent DFT in methanol, whose results exhibited excellent correlation with experimental data. The intermolecular interaction effect on geometric parameters, vibrational frequencies, and electronic properties were studied for the first time.  相似文献   

12.
呋喃查尔酮结构与电子光谱的密度泛函理论研究   总被引:1,自引:1,他引:0  
在密度泛函理论的PBE1PBE/6-31G(d)水平上对呋喃查尔酮及其衍生物的几何结构进行优化计算.在获得基态稳定结构的基础上,应用含时密度泛函理论计算其电子吸收光谱,探讨了取代基和溶剂对电子吸收光谱的影响,计算结果与实验结果吻合很好,平均绝对偏差仅为3.3nm(0.04eV).结果表明,取代基的引入和溶剂极性的增大均使光谱发生红移.通过前线轨道分析,揭示了该类化合物的主要吸收峰均源自分子中HOMO→LUMO电子跃迁.  相似文献   

13.
Geometries, inversion barriers, static and dynamic electronic and vibrational dipole polarizability (alpha), and first (beta) and second (gamma) hyperpolarizability of the pyrrole homologues C(4)H(4)XH (X = N, P, As, Sb, Bi) have been calculated by Hartree-Fock, M?ller-Plesset second-order perturbation theory, coupled-cluster theory accounting for singles, doubles, and noniterative triple excitations methods, as well as density functional theory using B3LYP and PBE1PBE functionals and Sadlej's Pol and 6-311G basis sets. Relativistic effects on the heavier homologues stibole and bismole have been taken into account within effective core potential approximation. The results show that the electronic (hyper)polarizabilities monotonically increase with the atomic number of the heteroatom, consistent with the decrease in the molecular hardness. Ring planarization reduces the carbon-carbon bond length alternation of the cis-butadienic unit, enhancing the electronic polarizability values (alpha(e)) by 4-12% and the (hyper)polarizability values (and gamma(e)) by 30-90%. Pure vibrational and zero-point vibrational average contributions to the (hyper)polarizabilities have been determined within the clamped nucleus approach. In the static limit, the pure vibrational hyperpolarizabilities have a major contribution. Anharmonic corrections dominate the pure vibrational hyperpolarizabilities of pyrrole, while they are less important for the heavier homologues. Static and dynamic electronic response properties of the pyrrole homologues are comparable to or larger than the corresponding properties of the furan and cyclopentadiene homologue series.  相似文献   

14.
通过结合杂化密度泛函和前线轨道理论与弹性散射格林函数方法研究了BE- MP(benzene-1,4-di-ethynyl-4-mercaptophenyl)和TEMP(thiophene-2,5-di-ethynyl-4- mercaptophenyl)两分子结的输运性质。基于杂化密度泛函方法计算两扩展分子电子结构的基础上,计算了两分子的输运性质.计算结果显示:电流增加来源于电极和分子轨道的共振;电导曲线呈现出平台特征.在此基础上从扩展分子A(Au-BEMP-Au)中间的苯环的旋转而引起电流减小的角度解释了负微分电阻现象.  相似文献   

15.
We study the orbital‐dependence of three (parameter‐free) double‐hybrid density functionals, namely the PBE0‐DH, the PBE‐QIDH models, and the SOS1‐PBE‐QIDH spin‐opposite‐scaled variant of the latter. To do it, we feed all their energy terms with different sets of orbitals obtained previously from self‐consistent density functional theory calculations using several exchange‐correlation functionals (e.g., PBE, PBE0, PBEH&H), or directly with HF‐PBE orbitals, to see their effect on selected datasets for atomization and reaction energies, the latter proned to marked self‐interaction errors. We find that the PBE‐QIDH double‐hybrid model shows a great consistency, as the best results are always obtained for the set of orbitals corresponding to its hybrid scheme, which prompts us to recommend this model without any other fitting or reparameterization. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
17.
Correlation effects within the GW approximation have been incorporated into the Keldysh nonequilibrium transport formalism. We show that GW describes the Kondo effect and the zero-temperature transport properties of the Anderson model fairly well. Combining the GW scheme with density functional theory and a Wannier function basis set, we illustrate the impact of correlations by computing the I-V characteristics of a hydrogen molecule between two Pt chains. Our results indicate that self-consistency is fundamental for the calculated currents, but that it tends to wash out satellite structures in the spectral function.  相似文献   

18.
The performance of the Hartree-Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n-->pi* and pi-->pi* electronic excitation energies of acrolein. All electronic structure methods employed the same solvent model, which is based on the combined quantum mechanics/molecular mechanics approach together with a dynamical averaging scheme. In addition to the predicted solvatochromic effects, we have also performed spectroscopic UV measurements of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n-->pi* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the pi-->pi* electronic transition in solution, whereas the recent CAM-B3LYP functional performs well also in this case. The pi-->pi* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental data.  相似文献   

19.
Dispersion forces, which originate the van der Waals interaction, are indispensable to describe numerous systems and processes, including metallic clusters and surfaces. In this work is used an efficient numerical implementation in the context of density functional theory of a non-local correlation van der Waals density functional (vdW-DF) to self-consistently solve the structure and electronic properties of small molecules (ArAu, AuF, ArAuF, ArCuF, Au(2)Hg, Au(2)Hg(2)), as well as Au(2-15) and Hg(2-6) clusters. Three different flavours of that vdW-DF exchange-correlation (xc) functional are tested. The results for small molecules are compared with those from the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) against experiments or highly accurate quantum chemical calculations. It is found that, on average, vdw-DF improves PBE binding energies and overestimates bond distances. Our vdW-DF calculations lead to planar structures as lowest energy isomers of Au(14) and Au(15) clusters. The calculated polarizability of Au(2-15) isomers dramatically decreases in passing from two-dimensional (2D) to three-dimensional (3D) equilibrium geometries. A combination of the density of states of two vdw-DF planar isomers of the Au(12)(-) anion is proposed to explain the photoelectron spectroscopy experiments. Contrary to PBE results, the vdW-DF calculations predict that the O(h) isomer of Hg(6) is more stable than the C(2v) one.  相似文献   

20.
The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation for the exchange-correlation energy functional has two nonempirical constructions, based on satisfaction of universal exact constraints on the hole density or on the energy. We show here that, by identifying one possible free parameter in exchange and a second in correlation, we can continue to satisfy these constraints while diminishing the gradient dependence almost to zero (i.e., almost recovering the local spin density approximation or LSDA). This points out the important role played by the Perdew-Wang 1991 nonempirical hole construction in shaping PBE and later constructions. Only the undiminished PBE is good for atoms and molecules, for reasons we present, but a somewhat diminished PBE could be useful for solids; in particular, the surface energies of solids could be improved. Even for atoms and molecules, a strongly diminished PBE works well when combined with a scaled-down self-interaction correction (although perhaps not significantly better than LSDA). This shows that the undiminished gradient dependence of PBE and related functionals works somewhat like a scaled-down self-interaction correction to LSDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号