首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.  相似文献   

2.
The phase transition of a simple local gauge model is investigated in terms of the Nambu-Jona-Lasinio mechanism and it is pointed out that the physical vacuum of QCD is bound state of quark-antiquark pairs which can be viewed, generally, as a nearly perfect color dia-electric medium. An important relation between the vacuum expectation value of gauge fields and scalar fields is also derived by solving the Euler equation for the gauge fields. Based on this relation the SUC(3) gauge potential is given which can be used to explain the asymptotic behavior and confinement of quarks in a hadron, and at the same time the Yukawa potential of strong interaction can be given too.  相似文献   

3.
The confinement/deconfinement phase transition in SU(3) lattice gauge theories at high temperatures is analogous to that of the Z(3) gauge theories. We study various Z(3) gauge-matter theories that result from replacing the gauge group SU(3) with its center Z(3). We include large-mass fermions in the Wilson formulation and allow a chemical potential. We show that in the limit of strong coupling and high temperature the (3 + 1)-dimensional theory becomes a three state, three-dimensional Potts model with uniform external fields of real and imaginary strengths related to the fermion mass and chemical potential. By studying the phase structure of the q = 3, d = 3 Potts model with external fields we argue that the confinement/deconfinement phase transition is first order, but highly sensitive to external fields, and that it does not occur at “strong coupling” in a Z(3) gauge theory if there is a light enough fermion present. We discuss the consequences of this result for QCD.  相似文献   

4.
Planar Chern-Simons (CS) theories in which a compact abelian gauge group U(1) × U(1) is spontaneously broken to U(1) × ZN are investigated. Among other things, it is noted that the theories just featuring the mixed CS term coupling the broken to the unbroken U(1) gauge fields in general exhibits an interesting form of confinement: only particles carrying certain multiples of the fundamental magnetic vortex flux unit and certain multiples of the fundamental charge of the unbroken U(1) gauge field can appear as free particles. Adding the usual CS term for the broken U(1) gauge fields does not change much. It merely leads to additional Aharonov-Bohm interactions among these particles. Upon introducing the CS term for the unbroken U(1) gauge fields, in contrast, the confinement phenomenon completely disappears.  相似文献   

5.
Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed.  相似文献   

6.
It is shown that permanent confinement in three-dimensional compact U(1) gauge theory can be destroyed by matter fields in a deconfinement transition. This follows from a nontrivial infrared fixed point caused by matter, and an anomalous scaling dimension of the gauge field. This leads to a logarithmic interaction between the defects of the gauge fields, which form a gas of magnetic monopoles. For logarithmic interactions, the original electric charges are unconfined. The confined phase, which is permanent in the absence of matter fields, is reached at a critical electric charge, where the interaction between magnetic charges is screened by a pair-unbinding in a Kosterlitz-Thouless-like phase transition.  相似文献   

7.
We propose to use a suitably defined vortex free energy as a disorder parameter in gauge field theories with matter fields. It is supposed to distinguish between the confinement phase, massless phase(s) and Higgs phase where they exist. The matter fields may transform according to an arbitrary representation of the gauge group. We compute the vortex free energy by series expansion for a Z2 Higgs model and for SU(2) lattice models with quark or Higgs fields in the fundamental representation at strong coupling (confinement phase), and for the Z2 Higgs model in the range of validity of low-temperature expansions (Higgs phase). The results are in agreement with the expected behavior.  相似文献   

8.
't Hooft's duality relation is used to investigate the possible dynamical symmetry breaking pattern SU(5)→ SU(4) ? U(1) where the gauge fields of SU(4) may be in one of four possible phases: (i) confinement phase, (ii) Higgs phase, (iii) “self-dual phase”, (iv) Coulomb phase. It is found that the duality relation involving the electric and magnetic free energies is satisfied in all these cases.  相似文献   

9.
In this paper the lattice current-current propagator is calculated and the influence of coset pure gauge fields of an Abelian chiral group G=U1×U5 on confinement properties of a quark system is discussed by virtue of the Wilson's criterion of lattice gauge theory. When subgroup H is U1, the coset pure gauge fields only contribute a perimeter law factor to the current-current propagator which has no influence on confinement properties of the system. When subgroup H is U5, the coset pure gauge fields also have no influence on confinement properties of the system.  相似文献   

10.
In this paper we construct a lattice formulation of the pure gauge fields on a coset space in the cases of a group G with non-trivial topological property and of a chiral group G, and present a local gauge invariant action of a quark system on a four-dimensional Euclidean space lattice, which has the continuum limit as usual. For non-chiral group with trivial topological property, it is shown that the coset pure gauge fields have no influence on the confinement properties of the confinement properties of the quark system by calculating lattice current-current propagator when the coset pure gauge fields remain manifest.  相似文献   

11.
In this paper the method of lattlce gauge theories is applied to the investigation of the effect of coset pure gauge fields of the non-Abelian chiral group on the confinement properties of a system. In particular, the current-current propagator of the coset G/H=SU(2)L×(2)r/SU(2) model is calculated. Then it IS found that the pure gauge fields-on coset space only offer a perimeter law factor which does not change the confinement properties of a physical system.  相似文献   

12.
The vortex free energy was proposed to distinguish between the confinement and the Higgs phase (in the sense of 't Hooft) in lattice gauge theory, when matter fields are present that transform according to an arbitrary representation of the gauge group. In this paper I consider the Z(2) Higgs model and calculate the vortex free energy in the screening part of the confining/screening phase of Fradkin and Shenker. The result does not agree with the expected behavior that corresponds to the structure of the phase diagram. Therefore the vortex free energy is no longer a good indicator for confinement when matter fields transform non-trivially under the center of the gauge group (such as Z(2) Higgs scalars).  相似文献   

13.
Scalar lattice gauge theories are models for scalar fields with local gauge symmetries. No fundamental gauge fields, or link variables in a lattice regularization, are introduced. The latter rather emerge as collective excitations composed from scalars. For suitable parameters scalar lattice gauge theories lead to confinement, with all continuum observables identical to usual lattice gauge theories. These models or their fermionic counterpart may be helpful for a realization of gauge theories by ultracold atoms. We conclude that the gauge bosons of the standard model of particle physics can arise as collective fields within models formulated for other “fundamental” degrees of freedom.  相似文献   

14.
In this paper the lattice current-current propagator is calcdlated and the influence of coset pure gauge fields of an abelian chiral group G=U1×U15 on confinement properties of a quark system is discussed by virtue of the Wilson's criterion in lattice gauge theory. When subgroup H is U1, the coset pure gauge fields only contribute a perimeter law factor to the current current propagator which has no influence on confinement properties of the system. When subgroup H is Us, the coset puregauge fields have no influence on wnfinement properties of the system either.  相似文献   

15.
In this paper we construct the lattice formulation of the pure gauge fields in a coset space in the cases of a group G with non-trivial topological property and of a chiral group G, and present a local gauge invariant action of a quark system on a fourdimensional Euclidean space lattice, which has the continuum limit as usual. For non-chiral group with trivial topological property, it is shown that the coset pure gauge fields have no influence on the confinement properties of the quark system by calculating latt-ice current-current propagztor when the coset pure gauge fields are retained manifest1y.  相似文献   

16.
本文介绍了由Wilson等人发展起来的处理粒子间强相互作用的格点规范理论。由于这个理论是建立在点阵上的规范理论,故首先讨论了点阵上体系的场论性质和统计物理性质之间的联系,介绍了处理粒子禁闭问题的Wilson判据,点阵的哈密顿形式。然后讨论了各种具体模型的计算方法,如规范场的点阵模型、紧致QED模型、费米子模型、阿贝尔Higgs模型等。在此基础上,总结出Wilson定理。本文也讨论了格点规范理论中的实空间重正化群方法,介绍了Heisenberg平面模型的重正化群分析,一维的二维的复现关系及Migdal近似。最后评介了近年来对于Wilson回路算子的一些研究,内容包括’t Hooft代数和Wilson回路算子方程等。  相似文献   

17.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

18.
Finite temperature SU(2) lattice gauge theory is investigated in a three-dimensional cubic box with fixed boundary conditions provided by a discretized, static Bogomolʼnyi–Prasad–Sommerfield (BPS) monopole solution with varying core scale . Using heating and cooling techniques, we establish that for discrete -values stable classical solutions either of self-dual or of pure magnetic type exist inside the box. Having switched on quantum fluctuations we compute the Polyakov line and other local operators. For different and at varying temperatures near the deconfinement transition we study the influence of the boundary condition on the vacuum inside the box. In contrast to the pure magnetic background field case, for the self-dual one we observe confinement even for temperatures quite far above the critical one. Received: 11 October 1998 / Published online: 11 February 1999  相似文献   

19.
In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures.  相似文献   

20.
By using the method of center projection, the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of nontrivial center links bounded by the closed 2-dimensional center vortex surfaces. The center field propagator is found to dominate the gluon propagator (in the Landau gauge) in the low momentum regime and to give rise to a power-law correction proportional to p(-2.9(1)) at high momentum. The screening mass of the center vortex field vanishes above the critical temperature of the deconfinement phase transition, which naturally explains the second order nature of this transition consistent with the vortex picture. Finally, the ghost propagator of the maximal center gauge is found to be infrared finite and, thus, shows that the coset fields play no role for confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号